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Abstract

A pruning-aware adaptive gradient method is proposed which classifies the vari-
ables in two sets before updating them using different strategies. This technique
extends the “relevant/irrelevant” approach of Ding et al. (Adv Neural Inf Process
Syst 32, 2019) and Zimmer et al. (Mathematical optimization for machine learning:
proceedings of the MATH+ thematic Einstein semester 2023, 2025) and allows a
posteriori sparsification of the solution of model parameter fitting problems. The
new method is proved to be convergent with a global rate of decrease of the aver-
aged gradient’s norm of the form O(log(k)/v/k + 1). Numerical experiments on
several applications show that it is competitive with existing pruning-aware Frank-
Wolfe algorithms, see e.g. Zimmer et al. (Mathematical optimization for machine
learning: proceedings of the MATH+ thematic Einstein semester 2023, 2025).
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1 Introduction

This paper deals with first-order objective-function-free optimization (OFFO) and
parameter pruning for optimisation problems of the form

2in, /(@) (1)
where f'is a smooth function from IR" to IR. In particular, our framework can be
applied to problems where the objective function f'is a loss function depending on
the variable x = (x1, . .., 2, ) defining a model’s parameters. For example, in several
machine learning applications, the training of the neural network model consists in
solving a finite sum minimization problem of the form

where the components of x correspond to parameters of the network and where both
n and m are large, the latter giving the number of samples in the training set and ¢;
being per-sample loss functions. Therefore, we will often refer to the components of
the problem variable x as the model/problem parameters.

OFFO algorithms are methods where the objective function is never computed;
instead, they rely only on derivative information, that is on the gradient in the first-
order case. A class of OFFO methods, known as adaptive gradient algorithms, gained
popularity in the machine learning community, emerging as state-of-the-art tech-
niques to train neural networks. Some examples include Adagrad [3, 4], Adam [5],
RMSprop [6], ADADELTA [7]. All of these methods share the common characteris-
tic of only relying on current and past gradient information to adaptively determine
the step or the step size or both at each iteration. As Gratton et al. suggested in [8—10],
Adagrad can be interpreted as trust-region method (see [11, 12] for a comprehensive
coverage) in which the radius of the trust-region is computed without evaluating the
objective function, which makes it significantly more resistant to noise. Specifically,
we propose a new OFFO method based on a modified version of Adagrad in the con-
text of parameter pruning. As the name implies, pruning a model refers to the process
of reducing its size and complexity, typically by removing or zeroing certain param-
eters that are considered unnecessary for its performance. In particular, in the neural
network context, the goal of pruning is to improve efficiency, reduce overfitting, and
speed up inference or training, without sacrificing much predictive accuracy [13—15].
We refer to our algorithm as pruning Adagrad (prunAdag).

Pruning emerges as a compression technique for neural networks alternative to
matrix or tensor factorization [16—18] or quantization [19-21]. Pruning can be per-
formed after training at the cost of re-training the model solely on the remaining
parameters [22], but this procedure can sometimes be computationally impractical.
Alternatively, one can induce sparsity during training adding sparsity-inducing regu-
larizer to the objective function [23—-25]; however, this strategy is significantly influ-
enced by the choice of the regularisation parameter, and the level of sparsity of the
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solution cannot be altered without re-training the model. To address these limitations,
pruning-aware methods have been developed. They require just one training task and
they typically do not involve sparsity-inducing regularisation but they aim at finding
a possibly dense solution, which is robust to pruning, in the sense that the perfor-
mance of the model is not significantly affected when individual parameters (unstruc-
tured pruning) [22] or groups of parameters (structured pruning) [26] are pruned
after training. In contrast to regularised methods, the level of sparsity of the solution
of a pruning-aware method is chosen by the user after training. Consequently, a key
concept in pruning-aware methods consists in the choice of the criteria to determine
which parameters or group of parameters can be removed with less impact on the
model’s performance [27]. This paper is mainly concerned with unstructured prun-
ing, but our approach can be extended to structured pruning as well. We also mention
the connection of pruning-aware methods with implicit regularisation schemes for
gradient descent methods, where sparsity is implicitly induced by prescribed choices
of initialization, step size, and stopping time, rather than through regularisation.
Implicit gradient methods have been proven to be effective in recovering sparse solu-
tions of unpenalised least squares regression problems [28, 29].

The majority of the pruning-aware schemes share two common aspects. The first
consists in classifying all the parameters, at each iteration, into relevant and irrelevant
according to specific criteria. Secondly, the method promotes the relevant param-
eters by update rules which usually involve derivative information, and penalizes the
irrelevant ones by diminishing their magnitudes or setting them to zero. This latter
strategy may be suboptimal in the context of neural network training, as it has been
shown that the importance of network weights can change dynamically during the
training process [30—32], meaning that zeroing parameters might decrease the ability
to capture these changes. Therefore, a controlled decrease of irrelevant parameters
is preferable. At the end of the training phase, a model trained by a pruning-aware
method has relevant components with larger magnitudes than the irrelevant ones.
Finally, irrelevant components are pruned by removing/zeroing those parameters that
are below some threshold such that the model matches any desired level of sparsity.
We now give an overview of existing pruning-aware schemes and then present our
contributions in this context.

1.1 Related works

We distinguish two classes of pruning-aware methods. The first divides parameters
into relevant and irrelevant and then updates them following various rules. This
approach is referred to as activation selection in [1]. The second updates parameters
all at once and forces the magnitude of irrelevant parameters to decrease by adding
specific sparsity-inducing constraints to the problem, see [2, 33].

The first pruning-aware approach is presented in [1, 34, 35] and employs Tay-
lor series to measure the importance of a parameter by estimating the impact of its
removal/zeroing on the value of the objective function in (1). More specifically, let
zp = (T1k,...,Tnk) € R™ be the k-th iterate of the method, then in the first-order
case, the relevance of the parameter x; j, at iteration k is measured by
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of
8Ii

(:Lk)(o — xi,k) = f(ka, ey 0 PRI ,;17”7;6) — f(xl,lm ey Lk e 7;1cn_’k) — O(Jtik).

Then, the T} parameters with largest values of %(m x)(0 — x; )| are classified as

relevant, as they are the ones that most significantly affect the objective function’s
value. Using this criterion, Ding et al. [1] propose to optimize relevant components
via momentum SGD, while gradually decreasing the magnitudes of all others clas-
sified as irrelevant. One of the advantages of this approach is that the number of rel-
evant components T} can be chosen at each iteration, in order to match a prescribed
level of sparsity. An adaptive choice to select T}, using the {y-norm of the param-
eters, is proposed in [1]. Although very efficient in practice, the convergence of gradi-
ent descent methods using Taylor series approach to classify relevant and irrelevant
parameters is not analyzed in [1]. Furthermore, it is not clear how much the irrelevant
components can be reduced at each iteration without affecting the convergence of the
method towards a stationary point.

A second class of pruning-aware methods consists in adding sparsity-inducing
constraints to the formulation in (1) and solving the deriving constrained optimisa-
tion problem using the (stochastic) Frank-Wolfe (SFW) algorithm [2, 36]. Specifi-
cally, the constraints considered are 7-sparse polytope and T-support-norm-ball for
unstructured pruning and group-7-support-norm-ball for structured pruning, see [33,
37, 38]. Since we are primarily interested in unstructured pruning in a determinis-
tic setting, we briefly describe the FW two-step framework [39, 40] for solving a
T-support-norm-ball constrained problem, which is used for comparison in Sect. 3.
Let T > 0 and 7 € R, then the T-support-norm-ball Cr(7) is defined as

Cr(r) = conv{z € R" | ||z[lo < T, [lz]2 <7},

where conv(-) denotes the convex hull. The FW algorithm is applied to the sparse-
constrained model

and consists of two main steps. First, a descent direction is computed, solving the
linear minimization oracle (LMO)

Uk = argmin'L)ECT(T) <U7 gk>7

where g, is the gradient of f'at the k-th iterate x;. The optimal solution of this prob-
lem is given by

) =7 gir/lgklr, ifi€Ry,
Vi = { 0 ’ otherwise, 2
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fori =1,...,n, where || - |z, is the Euclidean norm of the subvector containing the
indices in the set Ry, of the first 7’among the largest components of the absolute value
of gi. Next, the new feasible iterate is obtained as a convex combination of the past
iterate and the descent direction, that is

Ty1 = Tg + Nk (vk — Tk), 3)

for some learning rate 7 € [0, 1]. In machine learning or neural networks applica-
tions, SFW is often employed and utilizes the stochastic gradient instead of the actual
gradient gi. The convergence of SFW has been established in [41] for a finite sum
minimization problem in the nonconvex setting and it has been extended to the gradi-
ent rescaling version by Zimmer et al. in [2]. The SFW algorithm has demonstrated
performance comparable to state-of-the-art pruning methods [2]; however, like the
deterministic version, it has certain drawbacks. Specifically, the stepsize T is related
to the radius of the constrained region, which must be predetermined and cannot vary
throughout the iterations; as well as the number of components 7 that are updated
using gradient information. Moreover, the method is extremely sensitive to the tuning
of its parameters such as the scalar 7, the learning rate 7, and the number of gradient
components 7 in the search direction.

Our prunAdag method is a new pruning-aware scheme. At each iteration, we clas-
sify as relevant those parameters corresponding to the 7 largest directional deriva-
tive in magnitude, similarly to Zimmer et al. in [2], but the overall classification and
updating strategy are significantly different.

1. We develop a new adaptive strategy to separately update parameters that extends
the distinction between relevant and irrelevant ones. Specifically, we introduce
the concepts of optimisable and decreasable parameters. We consider all param-
eters that benefit from being updated using derivative information as optimisable,
including all relevant parameters and those irrelevant parameters that can be both
optimized and penalized simultaneously, using gradient information. We define
as decreasable those irrelevant parameters that are not penalized by a gradient
update and therefore require a specific penalization strategy to decrease their
magnitudes.

2. We propose to use the Adagrad step for updating the optimisable parameters,
while we develop an Adagrad-like trust-region framework to gradually decrease
the magnitude of the decreasable ones without relying on gradient information or
any function evaluations.

3. We prove the convergence of prunAdag with global convergence rate of
O(log(k)/vk + 1) in the case when g = Vf(xy) for all k (deterministic
setting).

4. We validate our method on several preliminary examples obtained from signal
processing, dictionary learning and binary classification applications.
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1.2 Organization of the paper

Our presentation is structured as follows. Section 2 introduces our prunAdag method

in Algorithm 2.1 and discusses both the criterion used for classifying parameters
at each iteration into optimisable and decreasable and the different update rules for
the two classes of parameters. Convergence of the method is analyzed in Sect. 2.1.
Section 3 presents a set of illustrative examples of the behaviour of prunAdag when
applied to random least-squares, sparse signal recovery, sparse coding step in diction-
ary learning, and binary classification with logistic loss function. A brief conclusion
is provided in Sect. 4.

1.3 Notations

Throughout the paper we adopt the following notations. At the k-th iteration, the gra-
dient g of the function f evaluated at the current iterate x, is denoted as g5, = g(x)
and its i-th component by g; .. Moreover, the superscript 7 denotes the transpose and
v;,5, denotes the i-th component of a vector v, € R". Unless specified otherwise,
I - || is the Euclidean norm on R"™ and ||z||z = ||z;cz]| is the Euclidean norm when
we consider only the indices in Z. We denote as A the complementary set of 4 in
{1,...,n}. We use the notation [z] for the minimum integer greater than x. Given
two sequences {ay } and {5k} of non-negative reals, we also say that oy, is O(Sy) is
there exists a finite constant » such that limy_, o (g /Bk) < k.

2 A first-order sparsity inducing adaptive gradient method without
regularisation

In the following discussion, we make the standard assumptions on problem (1) for
first-order convergence rate analysis.

AS.1: the objective function f'is continuously differentiable;

AS.2: its gradient g is Lipschitz continuous with Lipschitz constant L > 0, that is

lg(z) — g(y)|| < Lllx —yl|

forall z,y € R™;

AS.3: there exists a constant fioy such that, for all x, f(x) > fiow.

We now motivate and describe the prunAdag method. It falls in the class of prun-
ing-aware methods that, at a given iteration, first classifies the variables/parameters
in relevant and irrelevant before updating them.

Following Zimmer et al. [2, 33] and given a target 7 for the cardinality of the
relevant parameters,! we first define the set R, of Relevant parameters as the set
of cardinality 7 of indices corresponding to the first 7 among the largest directional
derivatives in magnitude at the kth iterate:

!'The integer parameter T is fixed during the iterations.

@ Springer



prunAdag: an adaptive pruning-aware gradient method

de:Ef{i €{l,...,n}||giklis one of the T largest components of |gx|}. (4)

The parameters indexed by R are thus considered irrelevant. The idea is then to
optimize on the relevant parameters and to reduce the magnitude of the others. In
our approach, optimisation is performed by applying the component-wise version of
Adagrad, in which the step s; j in the i-th variable is given by

Yk

Sik = — O 5
w?, ®)

for some suitably chosen weight wg?k derived from the history of past gradients.

However, it may happen that the step (5) that would be taken by the optimizer for
some of the irrelevant parameters does actually reduce their magnitudes: this happens
when the signs of x; 5, and g; ;. coincide. Thus it makes sense to take the optimisa-
tion step on these parameters as well, provided it remains within reasonable bounds
compared to |z; x|. More formally, we deem the i-th component (i € RY) to be “O
ptimisable" (in the sense that its update can be performed by (5)) if it belongs to the
set Ay, of Acceptable indices

def

A ik

]
Wiy

{i € R | sign(gix) = sign(z;x) and a;p < < bi,k} ,  (6)

where a; , and b; j are suitable bounds. As a consequence, the index set of the opti-
misable parameters at iteration & is given by

Odeeka UAg. @)

We also see that the “decreasable" parameters, whose magnitude we wish to Decrease
by other means than (5), have indices in the set Dy, = RS \ Aj. We intentionally do
not impose any restrictions on the bounds a; . and b; ;. in (6) as the general analysis,
including the convergence analysis, of prunAdag does not depend on them. In prac-
tice, one can choose a; ;; as a fraction of the absolute value of x; . Further practical
examples are given in Sect. 3 (see Table 1).

While the course of action for the “optimisable" parameters is clear (apply (5)),
what to do with the other parameters is, at this stage, less obvious. Our proposal is

Table 1 Four versions of

prunAdag, depending on @ik bik
the choice of the bounding prunAdag-V1 Tk llgrll= L +oo
sequences a; x and b; . used in E+1|° ”kaSk
Step 3 of Algorithm 2.1 prunAdag-V2 ik +oo
k+1
prunAdag-V3 Tigk | N9kllRy |4,k
E+1] [zxlls,
prunAdag-V4 Ti K | k]
k+1
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to extend our Adagrad-based approach by defining a step for the parameters in Dy
which is also of the form (optimality measure/weight), where now the optimality
measure is no longer given by gradient values, but by the magnitude of the irrelevant
parameters themselves (as we wish to drive them to zero, if possible), that is a step
of the form

sy = — ik 8)
ik = D
Wik

where the weight w}?k is now derived from the history of past irrelevant values of the
i-th parameter.

We are now ready to state the prunAdag algorithm more formally in Algorithm
2.1.

Algorithm 2.1 prunAdag

Step 0: Initialization. A starting point xg, a target number of relevant parameters

T e{1,...,n},aconstant ¢ € (0,1), and two initial weight vectors w{’_; = ¢ and

wP | =, fori=1,...,nare given. Set k = 0.

Step 1: Select relevant parameters. Compute the gradient g and define

Ri={ie{l,...,n} | |gix| is one of T largest components of |gx|}

Step 2: Optimisation weights. Compute

why =/ (W9 _)?+ 92, (€{l,...,n}) )

< bi,k} .

Step 3: Classify components. Define a; 1, b; 1, > 0 fori € RE, and

ik
[¢]
Wik

Ay = {l € R | sign(z; ) = sign(gix) and a; ) <

Then set O), = Ry, U Ay, and Dy, = OF.
Step 4: Compute a step for the optimisable components. Compute
9ik

ik =— € Op).
Sik b, (i € O) (10)

Step 5: Compute a step for the decreasable components. Compute

o _ .0 D _ D 2 L _ Tk .
Wi = Wig_1, Wi =4/ (wi,k_1)2 T Sig = D (i € Dy) (11)
ik
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why =wh_y (i € Og). (12)

Compute a step s; i, for all the decreasable components in Dy, such that

lsikl <lsiul (i€ D) (13)
Z 9ikSik < 0. (14)
1€Dy,

Step 6: New iterate. Define

Tk+1 = Tk + Sk,

increment & by one and return to Step 1.
A few comments are useful after this formal description.

1. The weights defined in (9) and (11) superficially look identical to weights used
by Adagrad. There is however a crucial difference for our purpose: each of these
updating formula only selects in the past those iterations for which the consid-
ered component (the i-th) is either optimisable (for the former) or decreasable
(for the latter). More specifically, if we set

o _ ) gixr 1€0 p _ ) i 1€Dy
Jik = { 0  otherwise, Tik = { 0 otherwise, (15)

then one verifies, using the first part of (11) and (12), that

(16)

2. We have left the choice of the exact technique to define s¥ very general, as long
as (13—14) hold (these conditions can be interpreted as “trust-region" conditions
with radius |sZL «1)- One simple technique is, for example, to set

S

p _ | —sign(z;) - minfa; x, |51Lk|] i € {i € Dy | sign(x; ) = sign(gix)} (17)
b 0 otherwise.

3. The specification of the set Ay, is not strictly necessary in our convergence theory
below, but our experience indicates that extending the set of optimisable param-
eters from Ry to Ry U Ay is beneficial in practice, as illustrated in Sect. 3.1.1.

2.1 Convergence analysis

First, we assume that the sequence produced by prunAdag is bounded, that is,
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AS.4: The sequence produced by Algorithm 2.1 is bounded, i.e. for some x, > 0,
|z k| < Ky forevery i ={1,...,n}andall k > 0.

AS.4 is needed to provide an upper bound for the contribution given by the update
of the decreasable variables/parameters which cannot be related to the gradient norm,
since the update does not involve any gradient information. Moreover, our frame-
work reduces the magnitudes of the decreasable parameters at every iteration, thus it
is reasonable to assume that the magnitudes of the parameters remain finite. We also

assume, without loss of generality, that ¢ < (32L& ) )
We start the convergence analysis of the prunAdag algorithm by stating a lemma
characterizing the descent properties of the method.

Lemma 2.1 Suppose that AS.1 and AS.2 hold. Then we have that, for all j > 0,

f(@j41) Sf(fﬂj)—z ot 3

and forall k > 0

k n 2 k n O\2 k n D
L (90)° L (x7)*
ENEEENNES 3) S5 LD 3) SF IHES 9 D ity
j=0i=1 ww 2 §=0 i=1 (wm-)Q 2 §=0 i=1 (ww)
Proof Using (14), we have that, at each iteration j of Algorithm 2.1,
T
95 85 = Z 9i,jSi5 + Z 9i,jSij < Z 9i,jSij < 0. (20)

i€, i€D; ey

Therefore, using Assumptions AS.1 and AS.2, (20), (10), (11), and (14) we derive
that

L
flxizn) < fz;) +g) 55 + *HSJ‘HZ

<)+ Y sty Xty 2

i€ 1€0; i€D;
2 2 2
<f@)=2 w5 T3 2 ot 2 wh
ico; Wi 2 i€0; (ww’) 2 i€D; (w”)2
o) - - (00) LN (o)’ | LS @)
’ i=1 wfj 2 i=1 (w?J)2 2 i=1 (whj)2
and (18) therefore holds. Finally, summing for j = 0, ..., k gives (19). O

We next proceed by recalling the following lemma due to [42—44], which is crucial
in the derivation of upper bounds for the second and third terms in equation (19). The
proof of the lemma can be found in [10, Lemma 3.1].
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Lemma 2.2 Let {cx}i>0 be a non-negative sequence and § > 0. Then
k

Z €+Z§—Ocj>.

<l 22
i= f+2z oce) Og( ¢ 22

We now state our main result on the convergence rate of prunAdag, partly inspired
by [10, Theorem 3.2].

Theorem 2.3 Suppose that AS.1-AS.4 hold. Assume that R, defined in (4), has car-
dinality T for every k and that the prunAdag algorithm is applied to problem (1). If

we define Fod:Cf f(xo) = flow, then,
0(k)

average g5 < [n/T]

23
§€{0,...k} +1 (23)

with

9(16)(1ZEf max {g, %e% ,32n2L2

W () (v i (1 42%)) ) o

where W_1 is the second branch of the Lambert function [45].

9||? allows us to derive

Proof Let us first observe that bounding the average of |[|g;
a bound for the average of the norm of the actual gradient ||g;||?. Indeed, since
R; € Oj contains the largest components of the gradient at iteration j and its cardi-

nality is always equal to 7, we have that

lglI? < Tn/TV Y 925 < Tn/T1 ) 925 = Tn/T1llg5 |I”

I€ER; €O
and therefore
average ||g;||> < [n/T average ||gf|>. 25)
7€{0,....k} j€{0,...k

Now, using (19) and the fact that the sequence wf?k in (10) is increasing in & for every
i, we have that

(9”2 n D \2

I k o, k n (l.id')
+§ZZ 5}7 + ZZ(wg)z

j=0 i=1 m j=0i=1

M\b«

k
flarn) < flwo) =Y lo;

maxie{1,...,n} w

from which we obtain that
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k 2 kK n D \2 kE n O \2
g7l L (zi;)* L (9i;)
} <r0+7§ § / +f§ B (26)
O D O
§j=0 maXze{l ..... TL} wi,k‘ 2 j=0i=1 (wl,j)2 2 j=0 i=1 (wi,j)2

We then use Lemma 2.2 with ¢; = ( gf?j)Q and ¢ = ¢, and the first part of (16), yielding

>y zzﬁzmwrzlg(( i)

i=1j=0 i=1 j=0

1
< nlog (1 += Z |9§9|2) :

£=0

Using again Lemma 2.2, this time with ¢; = (xfj)Q, the second part of (16) and
Assumption AS.4, we deduce that

n k . k xD )
i=13=0 ;JZHZ () 272 g( < ;( M)>)(28)

(k+ 1)k

< nlog <1+).
S

Combining (26), (27), (28) therefore gives that

k 2
Hg I nL (k+1)x
Zm—o“ﬁ?log(Hf%—log L+ ¢ ZHgJ I” ] .29)

i€{1,...,n} W;

where the first logarithmic term depends on the upper bound on the entries of the
iterate in Assumption AS.4, while the second depends on the sum of the norms of the
past optimisable gradients.

We now proceed by analyzing two separate cases.

Case 1. Assume first that the contribution given by the optimisable gradients
exceeds that of the first logarithmic term in £, that is

1 (k+1)/{2)
log | 1+ = | >log {1+ ———=).
. ngHg] 2] = o (14 55

Then, the inequality in (29) becomes

I

k k
[ 1
<To+nLlog [1+-Y |67 ]. (30)
;maxle{l,wn}w% gjgo J

Assume now that
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k

S Io
> gl ? > max |, sevt |, G1)

j=0

which implies

1 2 2
LI 1P < 2D 16917 and Ty <nLlog [ 237 16217 )
j=0 7=0 J=0

and observe from the first part of (16) that, for all: € {1,...,n} and all £,

k
s+ llg?l> (32)
=0

Thus, from (30), (31), and (32) we obtain that

k
Yo lg?II?

k
V22 =0 9?17

k
2
<2nLlog | =3 llg7I1* | .
=0

that is

NN

k k
2
>_llgP 2 < 4nLlog | \[ =D g | - (33)
j=0 j=0

If we now define

T = %a Y2 = 4TLL, U

9 k
=3 199112, (34)
S =0

we first note that our assumption that ¢ < (%)2 ensures that v > 3v;. Further-

more, the inequality (33) can then be rewritten as
Y1u < 2 log(u). (35)
Let us denote by 1/J(u)d:ef71u — 72 log(u). Since 72 > 371, the equation ¥ (u) =0

admits two roots u; < ug and (35) holds for u € [u1, us]. The definition of uy then
gives that

log(ug) — lUz =0,
72
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which is

— Ly
uge 2% =1.

Setting z = —%ug, we obtain that

ze® = —k.
Y2

Thus z = W_1(—2L) <0, where W_y is the second branch of the Lambert function
defined over [-2,0). As — > —1, z is well defined and thus

W:_Wz:_wwq(—%)>0
71 Al
Therefore, using (34),

2
S
Z o917 = 5w = 320212

v (i)

Hence, taking the average gives that

2

o2 272 Ve 1
average <32n°L* |W_1 | ——— C— 36
jefo.. {;}Hg ” ( 8”L> bl oY
Suppose now that (31) fails. Then, obviously,
average ||gO|| < max {g Se%} b 37
e "9 k1 G7)
Case 2. Consider now the case where
1 (k + 1)K2
log [ 1+ - 2l <log(1+-——-2).
g1+ _Z 991 | <1tog (14 55
j=
Then inequality in (29) becomes
k 2 2
k+1)ks
3 lo7l < Ty +nLlog (1 + Hm) : (38)
—o MaXie{1,..,n} Wik S

J

If, on one hand,
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k
STl I? = s, (39)

=0

then we have that

k
1 i le?l?

1 2
o §r0+nLlog(1+M>,
2 ijo ||gjOH2

<

that is

S

k 2

k4 1)k2
Y S <2 (Fo +nLlog (1 + (+)/~%)> : (40)
7=0

Taking the average then gives that

2
02 (k + 1)K 1
average ||g;7||7 <2 <F + nLlog (1 + - . 41
j€{0,... k} o7l 0 S k+1 (1)

If, on the other hand, (39) does not hold, then

o2 N
average ||g5 ||© < ——.
jef0, k) k+1 (42)

We finally deduce (23) by considering the largest upper among (36), (37), (41), (42)
and using (25). O
Theorem 2.3 demonstrates that prunAdag has a global rate of convergence in
O(log(k)/vk + 1), in contrast with the original Adagrad algorithm for which the
average gradient norm decreases like O(1/v/k + 1). Therefore, prunAdag can in
general be (marginally) slower than the original Adagrad algorithm. This is due to the
fact that deviating the gradient flow to reduce the magnitude of decreasable param-
eters comes at a convergence rate cost. Indeed, Lemma 2.1 shows that the decrease
of the function at each iteration, expressed by equation (19) is governed by two posi-
tive sums in the right-hand side, depending on the gradient of optimisable compo-
nents gi(?k and on the magnitudes of decreasable components x?k By contrast, the

descent lemma (Lemma 2.1 in [8]) of first-order OFFO methods, such as Adagrad,
only contains a single positive sum depending on the gradient entries. It is easy to
see from equation (19) that the function value eventually decreases monotonically if
the two positive sums in the right-hand side are dominated by the first, negative sum.
However, we might expect a monotonic decrease of the function for large enough
weights for the Adagrad algorithm, while the non-monotonic behaviour may persist
until convergence for prunAdag. This is because the magnitude of the decreasable
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components in Dy, is (hopefully) small at convergence but often non zero for all of
them. Therefore, the second positive sum in (18), depending on the decreasable com-
ponents in Dy, might remain significant, even for large £, but its growth is fortunately
bounded by a term in O(log(k)).

e [f we start from an initial point that is far from any stationary point of the prob-
lem, we might expect the largest components of the gradient to be large in mag-
nitude for several iterations, potentially exceeding the magnitudes of the decreas-
able components of the iterate. This is exactly the scenario described in Case 1 of
the proof of Theorem 2.3. Consequently, we observe an empirical Adagrad-like
almost linear decrease, as suggested by Egs. (36) and (37), until the contribu-
tion of the decreasable components x?k exceeds that of the optimisable gradient

components go.

o Theorem 2.3 proves that the average norm of the gradient converges to zero.
However, we cannot expect the same behaviour for the decreasable components
of the iterates, which are only likely to be small in magnitude at convergence.
This means that after a certain iteration, the contribution of the optimisable gra-
dient will be smaller than that of the decreasable components in Eq. (26). Thus,
Case 2 in the proof typically occurs for large k. As a consequence, we may then
expect, for a sufficiently large k, a decrease of the order of log(k)/+/k + 1 as sug-
gested by Eq. (41).

Both these observations suggest that we might expect a faster decrease during the
first iterations, followed by a potential slowdown when ||g¢|| becomes small, as can
be observed for the non-rescaled prunAdag-V2 and prunAdag-V4 in Figs. 4 and 5 in
the next section. In general, the rescaling of the step in the decreasable components
promotes a faster convergence and this behaviour is not observed. Nevertheless, a
fast convergence is not the only purpose of a pruning-aware method since robustness
to pruning also needs to be considered.

3 Numerical experiments

We now present numerical tests on a variety of problems from different applications
originating in

e a standard class of randomly generated under-determined linear least-squares
problems,

e the SPARCO library for sparse signal recovery [46] (as supplied by S2MPJ [47]),
which contains test cases from signal processing applications specifically de-
signed for sparse optimisation,

e the “sparse coding step" in dictionary learning problem,

e minimizing the logistic function in binary classification problems on several
well-know data sets.
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These test problems were chosen to test if prunAdag is able to enhance convergence
to a solution which is robust to pruning. (It is not our purpose to compare prunAdag
to state-of-the-art techniques in each of the applications considered.)

We implemented four versions of prunAdag with different choices of a; , and b; ;,
at Step 3 of Algorithm 2.1. Defining

def
Sk =

{i € RY | sign(zix) = sign(gir)},

we considered the rules described in Table 1 where Ry, is given in (4), yielding the
corresponding implementations prunAdag-V1, prunAdag-V2, prunAdag-V3 and
prunAdag-V4.

In all four versions, the lower bounding sequence a; j, represents a fraction of the
absolute value of i-th component of the iterate. In prunAdag-V2 and prunAdag-V4,
the sequence linearly decreases with the iteration number, while in prunAdag-V1 and
prunAdag-V3, in addition to the linearly decreasing factor, we rescale the sequence
to match the magnitude of the gradient g in Ry. A similar rescaling of the learning
rate has proven effective in SFW [2, 33]. In our experience, choosing a lower bound
sequence a; ) that decreases as 1/k helps to make the convergence of the method
faster and reduces the oscillations due to the non-monotone behaviour of the algo-
rithm. On the other hand, the upper bounding sequence b; ;, in prunAdag-V3 and
prunAdag-V4 is set to be equal to the iterate magnitude |x; x|. This choice prevents
the Adagrad-like step from exceeding |x; 1|, thus avoiding sign changes for the com-
ponents in Ag. Allowing potential sign changes in some components can be obtained
by choosing any b; , > |z; k|, €.g. as in prunAdag-V1 and prunAdag-V2 where we
do not consider any upper bound on b; ;, (b; , = 00), resulting in a larger set Ay, as
Fig. 2 shows. This implies that the number of optimisable components is then larger
and the algorithm’s speed is potentially enhanced. Conversely, the number of indices
in Dy, is smaller, potentially leading to less effective pruning. We illustrate the evalu-
ation of the sets Oy, Ay and Dy, for the four versions of prunAdag in Sect. 3.1.2.

In addition, we consider a fifth version of prunAdag denoted Relevant only, which
is identical to prunAdag, except that Step 3 is reduced to the definitions Oy = Ry,
and Dy, = RY . Thus no “acceptable” parameter is added to the list of the optimisable
ones in Relevant only.

We also implemented the deterministic version of the Frank-Wolfe method
of [2] for unstructured pruning, considering two learning rates 7 in (3): a lin-
early decreasing rate n, = 1/(k 4+ 1) (FW1) and the adaptively rescaled rate [33]

N = min {mlgkﬂn’“ 1}, where vy, is given in (2) and 5 € (0,1) (FW2). Finally,

lve—zkll

prunAdag reduces to the standard Adagrad algorithm if one chooses 7' = n and
avoids performing any classification of the parameters. We set ¢ = 1/100 as for
prunAdag and the Adagrad implementations.

The algorithms are implemented in MATLAB R2021b on a 64-bit Samsung/Gal-
axy with 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz and 8 GB of RAM,
under Windows 11 version 23H2.

All experiments are randomly initialized with a normalized starting point with
exactly 7 nonzero entries, representing a feasible point for FW1 and FW2 when-
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ever the T-support-norm-ball has radius greater than 1. We performed 20 runs per
test problem and report the complete averaged results in Tables 2, 3 and 4. The best
results achieved among all the methods are highlighted in bold in the Tables. In what
follows, we also show plots for a single run which are selected to visualize the typical
behaviour of the methods. We set T' = n/10 in both our method and the FW variants
(but we propose an analysis on the impact of the parameter 7"in Sect. 3.1.3). We also
tuned, for each set of experiments, the stepsize 7 in the FW implementations (named
71 and 2 in FW1 and FW2, respectively) and the learning parameter 3 of FW2 by
trial and error. In the comparison of prunAdag with FW, each algorithm is terminated
when either || gx|| < 1079 or when 10* iterations have been performed, unless oth-
erwise specified. When analyzing the behaviour of prunAdag and the comparison
among its variants, we report plots where fewer iterations were run for better plot
readability (see Figs. 1, 2, 3).

Throughout this section we perform pruning on the solution after optimisation
using two different strategies, depending on the analysis considered. Therefore, either
we fix a scalar threshold § and we remove all the components below this threshold, or
we choose a sparsity level of the solution ¢ (in percentage) and we set the threshold &
to achieve a o-sparse solution after pruning. (Note that the sparsity o of the solution
after pruning and the percentage of parameters removed are equivalent quantities;
therefore, we will use the two terms interchangeably.)

We now describe two performance measures that will be used below to discuss the
numerical results. Given a fixed 6 > 0, let x be the approximated solution returned
by some pruning-aware algorithm and denote by Z the pruned version of x, that is
the vector x whose components with magnitude less than ¢ have been zeroed out.
We then define a quality measure to evaluate the robustness of the pruning approach
considering

def def

p=llg@| and w=+/f(z) - f(x)|. (43)

Both these quantities provide estimates of how much pruning perturbs the solution
from x. A small value for p means that the pruned solution z is close to stationarity,
while a small w means that the objective function’s value at the pruned solution does
not differ much from that at x.

3.1 Random linear least-squares

In the first set of experiments, we consider a class of randomly generated linear least-
squares of the form

f(a) = 5l1Az — b]?, (44)

with five different matrices A € IR™>™ as in [48] and [49]. Specifically, we choose
six different classes (41,...,46) of matrix 4 such that

A1) A is randomly generated from a normal Gaussian distribution,

A2) A is a random orthogonal matrix,
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A3) A is random and has orthogonal columns,

A4) A is random and has orthogonal rows,

A5) A € (0, 1) generated from a Bernoulli distribution,

A6) A is obtained from the discrete cosine transform matrix of dimension 7.

We set m = 100 and n = 1000, making the problem under-determined with a rel-
atively large-dimensional subspace of solutions. We then generate a random solution
x* from a standard normal distribution (z* = randn(n, 1) in MATLAB notation)
and compute the right-hand side as b = Ax*.

3.1.1 Optimisable versus relevant

We first use the random least-squares problem A3 to show the advantage of extending
the parameter classification from relevant/irrelevant to optimisable/decreasable. Fig-
ure 1 shows the results of running prunAdag-V1, prunAdag-V2, prunAdag-V3 and
prunAdag-V4 (which differ by the choice of the bounding sequences a; ;. and b; 1, as
defined in Table 1) in comparison with the Relevant only version.

The contrast between Relevant only and the other version is striking in terms of
achieved number of components below the sparsity threshold and, consequently, of
robustness to pruning. Not only Relevant only is much less efficient in this respect,
but it does not converge faster to a stationary point than the other versions (except
when compared to prunAdag-V3, which achieves the best sparsity). In our experi-
ence, this behaviour is quite general and, in our view, fully justifies the introduction
of Ay in Step 3.

3.1.2 Classification and convergence for the four prunAdag versions

We next illustrate the evolution of the cardinality of the index sets Ok, Ay and Dy
along iterations for the four versions of prunAdag.

Figure 2 shows the cardinality of the sets Oy, Ay, and Dy, for all the versions of
prunAdag when solving the random least-squares problem Al. As shown by this
example, the cardinality does vary significantly from version to version, and we may
expect these variations to affect performance. We observe that robustness to pruning
is unsurprisingly better when the size of Dy, is larger, favoring prunAdag-V3 and
prunAdag-V4 on average. If we now turn to speed of convergence to stationary points,
the conclusion is less clear-cut. While, for prunAdag-V1 and prunAdag-V3 (that are
the methods using gradient rescaling in a; 1), the speed seems to improve with the
size of Ay, the effect is more problem-dependent for the (unscaled) prunAdag-V2
and prunAdag-V4.

3.1.3 Influenceof T

As can be expected, the choice of the target number of relevant parameters T does
influence the behaviour of the four versions of prunAdag. As we now show for prob-
lem Al in Fig. 3, this effect may vary from version to version. Indeed, asking for a
small T does not necessarily result in a large final number of parameters with small
magnitude, as is clear for the (unscaled) prunAdag-V2. Fortunately, the behaviour

@ Springer



M. Porcelli et al.

g0 -0'9 €Il 17’8 68°0 ¥9°L 61’1 9¥1 %09
0T 7'V 0LL L¥'9 88°0 441] ¥S'T 1t'C %0¥
¢01-0'¢ 9L S€9 88°0 p—01-5"9 LS'1 v€0 %0€
g0l - LT ¥'sT S€9 88°0 01-0T 56 8S'1 €00 %0t
819 96'8 $€9 8380 01-0T - 46 8S°1 y—0T - L€ %0T (9%
'8 161 €T ve'e ST (1187 86'¢ %06
s wo ¥1°0 70 €10 LS0 $9°0 %02
$9'C 6£°0 100 y—0T - L6 90T - G4 ¢-0T-6'9 90°0 %09
€Il 8€°0 e—0T-97 »—0T - L6 g—01-C¥ 5—0T - 8’8 0T - T'¥ %0¢
$9°0 3€°0 e—01-G¥% =01 L6 g-01-C¥% 7—01-8'8 7—01-T°9 %02 Y
L9L 8¢'T 44] €0 050 €€0 LS€ %09
1°09 00'T 80°0 ¢—0T 86 €0°0 10°0 611 %09
't 0L°0 90°0 ¢—0T L6 ¢-01 7€ 200 8€°0 %0%
L'6T 0 90°0 ¢—0T L6 01-0T - L6 200 710 %0¢€
679 600 90°0 ¢—0T L6 01-0T -2’6 200 ¢-0L- 1% %03 2%
€79 6+'0 090 901 L9°0 L9T 91 %08
06'v 10 440] 120 ST°0 LS0 €9°0 %02
LS'€ w0 €00 ¢-01-C'C ¢-01-€¢ 710 0T0 %09
W 0+'0 ¢—0T %G e—0T-T'T 9—01-09 7—01-2'8 200 %0¥
190 6€°0 e—0T-G¥ e—0T-T'T 9-0T-6°¢ y—01-2'8 =0T L8 %02 a4
¢01-0'9 601 L 680 €L'6 Se'l 671 %09
0L -7'¥ 1'6L €9 88°0 L1°0 9¢'1 691 %0¥
¢01-0'¢ Ly $€9 88°0 y—01- ¢S 8¢'1 120 %0€
g0 - L1 L9°ST $€9 88°0 01-0T - L6 6¢'1 10°0 %02
0L9 068 ¥€9 88°0 01-0T - 7°6 6€'1 ¢-01-¢¢ %0T v
peisepy [ IMd YA €A A TA 0 ase)

0 syuouodwod ﬁoﬁ:.ﬂawo sogejuoorod JUI_PIp I0J d aInseow J01I19 Ay} “moumzvmuummoﬁ wopuey ¢go|qeL

pringer

Qs



prunAdag: an adaptive pruning-aware gradient method

€e's 448 68’1 ¥'T ¥'C 4 T %0L
(44 wl 160 or'1 09°1 Lyl €Tl %09
SI'¢ Il Se0 €L°0 10°T 08°0 ¥9°0 %08
el or'1 200 01°0 620 €10 (AN} %0€
020 o'l e-0T 79 $-0T-9°¢ ¢—0T-0'¢ 50T €7 ¢—0T-CC %01 9V
peisepy A IMd YA €A A IA 0 ase)

(ponunuod) z |qey

pringer

As



M. Porcelli et al.

g0T - L€ 413 91¢ 0$°0 LEO ¥4 9 %0¢
g0T - 6T 4y €61 050 y—0T-6€ 10'T 611 %0¥
SL6 €48 €61 0$°0 6—0L-49°C L00 €10 %0€
687 LY €61 0S°0 o1-0T - 26 80°0 g0l ¢V %0¢
S91 I'el €6l 0S°0 010126 80°0 9-0T- €€ %0T 1S
909 L'SL 9°€€ ¥S'S 9’ S0'C €T1 %08
80t 1454 6'Sy 1SS Ts°s L9'T YA %0¥
81¢ 791 6t IS¢ 'S 91 €1 %0€
96 95'6 6t 1SS €5°6 91 YA %0¢
ST v 6t IS¢ 'S 91 €T %0T 6S
See 050 100 g0 €€ g0 €€ S0°0 €00 %06
0C LTO 100 y—01-0"9 y—0T-0C 200 200 %0L
S6°0 $1°0 100 3—01-09 e—0T- LT e—0T-0°L ¢—0T-0'L %08
€0 L0°0 10°0 $—0T1-09 g—0T-L'T e—0T-V'1 ¢—0T-€C %0¢
80°0 S0°0 10°0 »—01-09 ¢—0T- LT 9—0T 97 $—0T1-9C %0T LS
Y91 L80 €8’ 8L'T 8L'1 1T¢ a4 %09
STl €9°0 10 00 Y€0 €0°0 98°0 %08
€88 wo v1°0 00 €0°0 200 €T0 %0¥
0°LS (44| 110 200 g—0L 4’1 €0°0 90°0 %0€
89'L 10°0 110 200 01" 9€ €00 200 %02 SS
6'1¢ 10 1€0 96§ 629 699 179 %0L
TLI 10 Tro ¢—0T-T9 S$°0 80°0 ST0 %09
Sel 10 Tro g—0T-2C Tro SO0 80°0 %0¢
0L 140 200 e—0T-9'T y—01-C'T e—0T-T°€ ¢—0T-T°8 %0€
51 170 200 ¢—0T-9'1 01-0T-96 ¢-0T-€ ¢—01-C¥ %01 €S
peisepy md TMd YA N TA A 0 wo[qoId

0 syuouodwod paunid Jo sagejusdiad Juaroyrp pue d amseaw 10419 Ay :swd[qoid ODYVIS € dqel

pringer

Qs



prunAdag: an adaptive pruning-aware gradient method

of the (scaled) prunAdag-V3 is typically more consistent. For problem Al and in
general, choosing a smaller 7 then results in a larger number of solution components
whose absolute value is below the sparsity threshold, but, as can be expected, at the
price of slower convergence (see the two bottom panels of Fig. 3).

3.1.4 prunAdag, FW and Adagrad

We now turn to results obtained when running the four versions of prunAdag along
FW and the standard Adagrad, using 71 = 50 for FW1, 72 = 100, and 8 = 0.001 for
FW?2. Table 2 reports a comparison between the four versions of prunAdag, FW1,
FW2, and Adagrad, and displays, for each random matrix and each algorithm, the
pruning quality measure p defined in (43), averaged over 20 runs, for 5 different
percentages o of pruned components. In summary, these results show that, when the
percentage of pruned components ¢ is below 50%, prunAdag-V3 is the most reliable
method in five of the six problems considered, followed by prunAdag-V4. On the
contrary, prunAdag-V1 is extremely reliable when the percentage of pruned param-
eters is below 30%, but its performance degrades rapidly as this percentage increases.
For very aggressive pruning, that is for o around 70%, FW1, FW2 and prunAdag-
V4 exhibit the best results, making those methods particularly suitable for applica-
tions where sparsity is to be preferred to high accuracy. We illustrate these results by
graphically detailing, in Fig. 4, the (typical) results obtained for problem A2.

This figure shows that version prunAdag-V1 is the fastest algorithm, perform-
ing comparably to the original Adagrad algorithm. However, it is the less robust to
pruning among all prunAdag versions. prunAdag-V3 satisfies the stopping criterion
on the gradient norm while being by far the best choice in terms of robustness to
pruning up to 50% of sparsity. Despite their poor performance for lower percentages
of pruned components, FW1 and FW2 remain a valid alternative for very aggressive
pruning, even though their convergence is the slowest among the algorithms consid-
ered. However, one should remember that FW is quite sensitive to the choice of its
parameters and those used here have been tuned once for all the least-square prob-
lems considered (faster convergence can sometimes be achieved by further problem-
by-problem tuning).

3.2 SPARCO problems

The aim of sparse signal recovery is finding a sparse representation of an observed
noisy signal b as a linear combination of some redundant dictionary 4. Typically,
the dictionary is a wide matrix with more columns than rows, consisting of various
bases such as wavelet, discrete cosine, and Fourier. The SPARCO library [46] as sup-
plied by S2MPJ [47] includes examples of these problems for different dictionaries.
Given a sparse vector 2*, the observation is generated as b = Az™* + r, where 7 is
additive noise vector of appropriate dimension and 4 is a fixed dictionary. The aim
is to recover a robust solution by solving the related under-determined least-squares
and using the prunAdag algorithm instead of enhancing sparsity using a regularizing
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Table 4 Binary classification. Percentage of correctly classified samples in the testing set

Problem B VI(%) V2(%) V3(%) V4(%) FWI(%) FW2(%) Adagrad (%)
GISETTE 75 9375 9450  93.68  94.51  94.66 94.30  94.13
80 93.75 9442 9355 9433  94.66 9426 93.61
85 9340 9403  93.10 9405  94.68 94.35  92.45
90 92.63  93.55 9220 93.70  94.31 93.85  89.76
95 87.13  90.86  83.73  89.53  91.81 90.20  83.70
MNIST 75 81.90 81.91  80.60 80.46  83.65 81.85  80.15
80 81.48 81.53 8048 8041  83.33 81.21  79.45
85 8043  80.53  80.35  80.12  82.80 80.83  77.32
90 78.02 78.15 7883 7885 8151 79.02  75.68
95 7226 7238 7411 7392  76.60 72.48  66.06
REGEDO 70 96.36  95.93  96.36  96.33  97.33 97.33  96.20
75 96.33 9593 9650  96.67  97.33 97.33  95.86
80 96.20 9583  96.23  96.76  97.33 97.33  96.00
85 96.76  96.10  96.96  96.60  97.33 97.46  93.06
90 95.90  95.67  84.50 9640  97.33 98.60  65.20
A9A 65 81.65 82.16  81.87 81.97  83.07 83.33  76.93
70 81.33 81.34 8153 81.67  83.37 83.10  72.78
75 80.68  80.86  80.77  80.22  83.40 83.03  71.25
80 79.53 7863  79.55  79.01  82.70 82.85  71.25
85 7583 7595 7620 7623  82.36 81.60  72.76
MOLECULE 65 79.30 7877  78.70 7839 7853 7954  65.00
70 7751 7811 7843  78.18  78.56 78.95  62.76
75 7611 7622  78.04 78.28%  78.32 7912 62.86
80 74.65 7490 77.80 7811  76.74 7517 62.51
85 71.01 7083 75.69 7653  76.50 73.00  60.73

term” For these tests, we set the FW parameter to 71 = 100, 75 = 100 and 8 = 0.001.
The complete results for different percentages o of pruned components are given in
Table 3. We observe that prunAdag-V3 is the most robust algorithm in four out of five
considered examples when the percentage of pruned components is below 50%. As
for random-least squares, FW1 and prunAdag-V3 are the most reliable for a percent-
age of pruned components o exceeding 50%, thus they represent a better choice for

very aggressive pruning.

Figure 5 shows that FW2 is the fastest algorithm to converge; however, it does
not exhibit strong robustness properties, showing a similar behaviour to Adagrad
algorithm. By contrast, prunAdag-V3 reaches the tolerance set for the norm of the
gradient and it has the lowest value of the error measure p up to 50% of pruned com-
ponents and the lowest value for error measure w up to 40% of pruned components.
All versions of prunAdag exhibit more robust performance than Adagrad algorithm.

2Since our focus is robustness to pruning, we deliberately ignore the robustness-to-noise issue that might
occur if we solve the non-regularised least-squares. However, as long as the assumptions AS.1, AS.2, and
AS.3 are satisfied, any regularisation term can be added to the objective function.
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Fig. 1 Effect of introducing the class of optimisable parameters within the minimization framework
of prunAdag. a Gradient norm (solid line) on the left y-axis and percentage of parameters below
§ = 103 (dotted line) on the right y-axes along the iterations. b Error measures p (solid) and
w (dashed) for different percentages of pruned components after the optimisation. Each algorithm runs
for 5000 iterations or until convergence (Random least-squares A3)

3.3 Sparse coding in dictionary learning

Let Y be a given dataset, the aim of dictionary learning is to find a dictionary D and
a sparse coefficient matrix X, such that Y =~ D X. This problem is frequently solved
by alternating optimisation and we focus on the so-called sparse coding step, that is,
given D we aim at finding a sparse X such that Y =~ DX. Given k > 0, for each ele-
ment of the dataset y (column of Y) and positive integer m, the standard formulation
of the sparse coding step is the following

min ||y — Dx|? such that ||z]|o < m, (45)

where /y denotes the zero-norm of a vector, defined as the number of its nonzero
entries. We test our framework by addressing problem (45) removing the explicit
constraint and using prunAdag to find a possibly dense solution that is robust to prun-
ing. This approach has the advantage of allowing a posteriori pruning with different
sparsity levels.
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Fig.2 Dynamic of parameters’ classification that corresponds to the cardinality of the sets Oy, Ay, and
Dy within 1000 iteration or until convergence (Random least-squares A1)

In our tests, we consider a subset of the MNIST data set [14] and we generated
D in problem (45) by using KSVD [50], the state-of-the-art solver for solving the
dictionary learning problems.® The data set Y has dimension 784 x 4000, the dic-
tionary D has 784 rows and 1000 columns and ¢ in (45) is chosen equal to 100. We
set the FW parameters to 73 = 10, 72 = 20, and 5 = 0.001. In Fig. 6 we illustrate
the reconstruction of an instance y ~ Dz, where Z is the pruned solution obtained
by prunAdag-V1 algorithm for increasing percentages of pruned parameters. The
results show that the solution begins to degrade when more than 40% of parameters
are pruned. Figure 7 confirms the visual intuition since the error measure p remains
below 10~ for prunAdag-V1 algorithm. Moreover, Fig. 7 on the left highlights that
prunAdag-V1 is the most robust algorithm up to 70% of pruned components, while
prunAdag-V3 and prunAdag-V4, despite their poor global accuracy, remain the best
choice for aggressive pruning with more than 80% of pruned parameters.

3We used the Matlab implementation KSVD-Box v13 of K-SVD available at http://www.cs.technion.ac.
il/~ronrubin/software.html with default parameters.
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Fig. 3 Norm of the gradient on the left and percentage of parameters below § = 10~3 on the right
along 3000 iterations or until convergence for prunAdag-V2 and prunAdag-V3 and different target
numbers of relevant parameters 7' (Random least-squares A1)

3.4 Binary classification

Finally, we test our method on the averaged logistic loss for binary classification.
We assume that a labeled training set {y;,2;} with y; € R™ and z; € {0,1} for
1 =1,..., N is available, where z; classifies each sample into two distinct classes.
The averaged logistic loss over all samples is neither linear nor convex, and it is
defined as

N
fz) = % S log(1 + e ), (46)
i=1

If the number of features in the data set is large, we expect that some may be redun-
dant or irrelevant in the classification process; thus, pruning can be used to achieve
a sparse solution that does not consistently degrade the classification performance.
We use prunAdag to minimize the function in (46) on the training set and to promote
convergence towards a solution x in which the largest components correspond to
relevant features. Then, we prune the parameters to achieve different levels of spar-
sity o and evaluate the prediction on the testing set using the pruned solution. For
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Fig. 4 On top, a gradient norm and b percentage of components below a fixed threshold § = 10~3
along iterations; at the bottom, ¢ error measure w and d error measure p for different percentages of
pruned components after the optimisation (Random least-squares A2)

this experiment, we select small-size data sets* that have at least 100 features, that
are MNIST? [14], GISETTE [51], REGEDO [52], A9A [51], and MOLECULE [51].
We split the training and testing set following a ratio 70:30. The data is normalized
using min-max normalization and each algorithm is randomly initialized and stopped
after 2000 iterations. We set the FW parameters to 73 = 10, 7 = 100, and 5 = 0.5.
The results are collected in Table 4, where we show the average test accuracy and
the percentage of components pruned for each algorithm. In Fig. 8 we analyze the
performance of the algorithms on the GISETTE data set.

Table 4 shows that all four versions of prunAdag yield a consistent reduction in
the number of parameters of the model over 80% for all problems, without affect-
ing the classification performance, and are significantly more robust to pruning than
Adagrad. We are not able to identify one of the four versions that outperforms the
others; however, we can observe that prunAdag-V4 tolerates the largest number of
pruned components. In Fig. 8 (¢) we compare Adagrad, FW and prunAdag in terms
of average robustness to pruning parameters after training on the GISETTE data set

4We randomly selected 1000 samples for MNIST and A9A.

3 Classification between even and odd numbers.
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Fig.5 On top, a gradient norm and b percentage of components below the threshold § = 10~3 along
iterations; at the bottom, ¢ error measure w and d error measure p for different percentages of pruned
components o after the optimisation (Sparco 11)

from 20 independent starting points. The figure clearly shows that all four versions
of prunAdag are more robust to pruning than Adagrad, as small components corre-
spond to irrelevant components of the model. Indeed, all the versions show a stable
accuracy for a 70% sparse solution and that of prunAdag-V2 and prunAdag-V4 are
not affected significantly by pruning 90% of solution’s components. One also notes
the excellent performance of FW on this example and level of sparsity. It seems that,
even if the norm of the gradient at the final iterate is still larger after the training phase
than is the case for prunAdag (see Fig. 8a)), it is sufficient to produce good model
predictions.

4 Conclusions

We have proposed a new first-order OFFO method, named prunAdag, intended for
applications where pruning of the variables/parameters is desirable. The new “prun-
ing-aware" algorithm uses a new strategy to classify parameters at each iteration
of prunAdag algorithm into “optimisable" and “decreasable", instead of “relevant”
and “irrelevant" as suggested in [1], and extending the concept introduced in [2],
where the optimisation is performed on the components related to the largest par-
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Fig. 6 MNIST sparse coding step in dictionary learning. Visual representations of pruned solutions
of our best algorithm prunAdag-V1 in dictionary learning application, for different percentage o of
pruned parameters in the first two rows (a). Adagrad solution for different levels of pruned components
in the last two rows (b)

tial derivatives. It also features a new framework to update parameters in these two
classes separately, based on an Adagrad-like step for the first and on an adaptive
trust-region approach to decrease the magnitude of the variables in the second. We
proved the convergence of the method to first-order stationary points with global rate
O(log(k)/vk + 1). Finally, we conducted numerical experiments on several real-
world applications, such as sparse signal recovery, dictionary learning, and binary
classification. These experiments suggest that the new approach (and its prunAdag-
V3 version in particular) has a clear practical potential.

While we have, in this paper, focused on the “deterministic case" where the gra-
dient values are computed exactly, the “stochastic case" where the gradient may be
contaminated by random noise (such as sampling) is also clearly of interest, and the
object of current research. Also of interest is the inclusion of momentum in prunAdag
or a similar algorithm.
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