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Abstract
A pruning-aware adaptive gradient method is proposed which classifies the vari-
ables in two sets before updating them using different strategies. This technique 
extends the “relevant/irrelevant" approach of Ding et al. (Adv Neural Inf Process 
Syst 32, 2019) and Zimmer et al. (Mathematical optimization for machine learning: 
proceedings of the MATH+ thematic Einstein semester 2023, 2025) and allows a 
posteriori sparsification of the solution of model parameter fitting problems. The 
new method is proved to be convergent with a global rate of decrease of the aver-
aged gradient’s norm of the form O(log(k)/

√
k + 1). Numerical experiments on 

several applications show that it is competitive with existing pruning-aware Frank-
Wolfe algorithms, see e.g. Zimmer et al. (Mathematical optimization for machine 
learning: proceedings of the MATH+ thematic Einstein semester 2023, 2025).
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1  Introduction

This paper deals with first-order objective-function-free optimization (OFFO) and 
parameter pruning for optimisation problems of the form

	
min

x∈IRn
f(x)� (1)

where f is a smooth function from IRn to IR. In particular, our framework can be 
applied to problems where the objective function f is a loss function depending on 
the variable x = (x1, . . . , xn) defining a model’s parameters. For example, in several 
machine learning applications, the training of the neural network model consists in 
solving a finite sum minimization problem of the form

	
f(x) = 1

m

m∑
i=1

ℓi(x),

where the components of x correspond to parameters of the network and where both 
n and m are large, the latter giving the number of samples in the training set and ℓi 
being per-sample loss functions. Therefore, we will often refer to the components of 
the problem variable x as the model/problem parameters.

OFFO algorithms are methods where the objective function is never computed; 
instead, they rely only on derivative information, that is on the gradient in the first-
order case. A class of OFFO methods, known as adaptive gradient algorithms, gained 
popularity in the machine learning community, emerging as state-of-the-art tech-
niques to train neural networks. Some examples include Adagrad [3, 4], Adam [5], 
RMSprop [6], ADADELTA [7]. All of these methods share the common characteris-
tic of only relying on current and past gradient information to adaptively determine 
the step or the step size or both at each iteration. As Gratton et al. suggested in [8–10], 
Adagrad can be interpreted as trust-region method (see [11, 12] for a comprehensive 
coverage) in which the radius of the trust-region is computed without evaluating the 
objective function, which makes it significantly more resistant to noise. Specifically, 
we propose a new OFFO method based on a modified version of Adagrad in the con-
text of parameter pruning. As the name implies, pruning a model refers to the process 
of reducing its size and complexity, typically by removing or zeroing certain param-
eters that are considered unnecessary for its performance. In particular, in the neural 
network context, the goal of pruning is to improve efficiency, reduce overfitting, and 
speed up inference or training, without sacrificing much predictive accuracy [13–15]. 
We refer to our algorithm as pruning Adagrad (prunAdag).

Pruning emerges as a compression technique for neural networks alternative to 
matrix or tensor factorization [16–18] or quantization [19–21]. Pruning can be per-
formed after training at the cost of re-training the model solely on the remaining 
parameters [22], but this procedure can sometimes be computationally impractical. 
Alternatively, one can induce sparsity during training adding sparsity-inducing regu-
larizer to the objective function [23–25]; however, this strategy is significantly influ-
enced by the choice of the regularisation parameter, and the level of sparsity of the 
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solution cannot be altered without re-training the model. To address these limitations, 
pruning-aware methods have been developed. They require just one training task and 
they typically do not involve sparsity-inducing regularisation but they aim at finding 
a possibly dense solution, which is robust to pruning, in the sense that the perfor-
mance of the model is not significantly affected when individual parameters (unstruc-
tured pruning)  [22] or groups of parameters (structured pruning)  [26] are pruned 
after training. In contrast to regularised methods, the level of sparsity of the solution 
of a pruning-aware method is chosen by the user after training. Consequently, a key 
concept in pruning-aware methods consists in the choice of the criteria to determine 
which parameters or group of parameters can be removed with less impact on the 
model’s performance [27]. This paper is mainly concerned with unstructured prun-
ing, but our approach can be extended to structured pruning as well. We also mention 
the connection of pruning-aware methods with implicit regularisation schemes for 
gradient descent methods, where sparsity is implicitly induced by prescribed choices 
of initialization, step size, and stopping time, rather than through regularisation. 
Implicit gradient methods have been proven to be effective in recovering sparse solu-
tions of unpenalised least squares regression problems [28, 29].

The majority of the pruning-aware schemes share two common aspects. The first 
consists in classifying all the parameters, at each iteration, into relevant and irrelevant 
according to specific criteria. Secondly, the method promotes the relevant param-
eters by update rules which usually involve derivative information, and penalizes the 
irrelevant ones by diminishing their magnitudes or setting them to zero. This latter 
strategy may be suboptimal in the context of neural network training, as it has been 
shown that the importance of network weights can change dynamically during the 
training process [30–32], meaning that zeroing parameters might decrease the ability 
to capture these changes. Therefore, a controlled decrease of irrelevant parameters 
is preferable. At the end of the training phase, a model trained by a pruning-aware 
method has relevant components with larger magnitudes than the irrelevant ones. 
Finally, irrelevant components are pruned by removing/zeroing those parameters that 
are below some threshold such that the model matches any desired level of sparsity. 
We now give an overview of existing pruning-aware schemes and then present our 
contributions in this context.

1.1  Related works

We distinguish two classes of pruning-aware methods. The first divides parameters 
into relevant and irrelevant and then updates them following various rules. This 
approach is referred to as activation selection in [1]. The second updates parameters 
all at once and forces the magnitude of irrelevant parameters to decrease by adding 
specific sparsity-inducing constraints to the problem, see [2, 33].

The first pruning-aware approach is presented in  [1, 34, 35] and employs Tay-
lor series to measure the importance of a parameter by estimating the impact of its 
removal/zeroing on the value of the objective function in (1). More specifically, let 
xk = (x1,k, . . . , xn,k) ∈ Rn be the k-th iterate of the method, then in the first-order 
case, the relevance of the parameter xi,k at iteration k is measured by
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∂f

∂xi
(xk)(0 − xi,k) = f(x1,k, . . . , 0︸︷︷︸

xi,k

, . . . , xn,k) − f(x1,k, . . . , xi,k, . . . , xn,k) − o(x2
i,k).

Then, the Tk parameters with largest values of 
∣∣∣ ∂f

∂xi
(xk)(0 − xi,k)

∣∣∣ are classified as 
relevant, as they are the ones that most significantly affect the objective function’s 
value. Using this criterion, Ding et al. [1] propose to optimize relevant components 
via momentum SGD, while gradually decreasing the magnitudes of all others clas-
sified as irrelevant. One of the advantages of this approach is that the number of rel-
evant components Tk can be chosen at each iteration, in order to match a prescribed 
level of sparsity. An adaptive choice to select Tk, using the ℓ0-norm of the param-
eters, is proposed in [1]. Although very efficient in practice, the convergence of gradi-
ent descent methods using Taylor series approach to classify relevant and irrelevant 
parameters is not analyzed in [1]. Furthermore, it is not clear how much the irrelevant 
components can be reduced at each iteration without affecting the convergence of the 
method towards a stationary point.

A second class of pruning-aware methods consists in adding sparsity-inducing 
constraints to the formulation in (1) and solving the deriving constrained optimisa-
tion problem using the (stochastic) Frank-Wolfe (SFW) algorithm [2, 36]. Specifi-
cally, the constraints considered are T-sparse polytope and T-support-norm-ball for 
unstructured pruning and group-T-support-norm-ball for structured pruning, see [33, 
37, 38]. Since we are primarily interested in unstructured pruning in a determinis-
tic setting, we briefly describe the FW two-step framework  [39, 40] for solving a 
T-support-norm-ball constrained problem, which is used for comparison in Sect. 3. 
Let T > 0 and τ ∈ R, then the T-support-norm-ball CT (τ) is defined as

	 CT (τ) = conv{x ∈ Rn | ∥x∥0 ≤ T, ∥x∥2 ≤ τ},

where conv(·) denotes the convex hull. The FW algorithm is applied to the sparse-
constrained model

	
min

x∈CT (τ)
f(x)

and consists of two main steps. First, a descent direction is computed, solving the 
linear minimization oracle (LMO)

	 vk = argminv∈CT (τ)⟨v, gk⟩,

where gk is the gradient of f at the k-th iterate xk. The optimal solution of this prob-
lem is given by

	
vi,k =

{
−τ gi,k/∥gk∥Rk

if i ∈ Rk,
0 otherwise, � (2)
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for i = 1, . . . , n, where ∥ · ∥Rk  is the Euclidean norm of the subvector containing the 
indices in the set Rk of the first T among the largest components of the absolute value 
of gk. Next, the new feasible iterate is obtained as a convex combination of the past 
iterate and the descent direction, that is

	 xk+1 = xk + ηk(vk − xk),� (3)

for some learning rate ηk ∈ [0, 1]. In machine learning or neural networks applica-
tions, SFW is often employed and utilizes the stochastic gradient instead of the actual 
gradient gk. The convergence of SFW has been established in [41] for a finite sum 
minimization problem in the nonconvex setting and it has been extended to the gradi-
ent rescaling version by Zimmer et al. in [2]. The SFW algorithm has demonstrated 
performance comparable to state-of-the-art pruning methods [2]; however, like the 
deterministic version, it has certain drawbacks. Specifically, the stepsize τ  is related 
to the radius of the constrained region, which must be predetermined and cannot vary 
throughout the iterations; as well as the number of components T that are updated 
using gradient information. Moreover, the method is extremely sensitive to the tuning 
of its parameters such as the scalar τ , the learning rate ηk, and the number of gradient 
components T in the search direction.

Our prunAdag method is a new pruning-aware scheme. At each iteration, we clas-
sify as relevant those parameters corresponding to the T largest directional deriva-
tive in magnitude, similarly to Zimmer et al. in [2], but the overall classification and 
updating strategy are significantly different. 

1.	 We develop a new adaptive strategy to separately update parameters that extends 
the distinction between relevant and irrelevant ones. Specifically, we introduce 
the concepts of optimisable and decreasable parameters. We consider all param-
eters that benefit from being updated using derivative information as optimisable, 
including all relevant parameters and those irrelevant parameters that can be both 
optimized and penalized simultaneously, using gradient information. We define 
as decreasable those irrelevant parameters that are not penalized by a gradient 
update and therefore require a specific penalization strategy to decrease their 
magnitudes.

2.	 We propose to use the Adagrad step for updating the optimisable parameters, 
while we develop an Adagrad-like trust-region framework to gradually decrease 
the magnitude of the decreasable ones without relying on gradient information or 
any function evaluations.

3.	 We prove the convergence of prunAdag with global convergence rate of 
O(log(k)/

√
k + 1) in the case when gk = ∇f(xk) for all k (deterministic 

setting).
4.	 We validate our method on several preliminary examples obtained from signal 

processing, dictionary learning and binary classification applications.
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1.2  Organization of the paper

 Our presentation is structured as follows. Section 2 introduces our prunAdag method 
in Algorithm 2.1 and discusses both the criterion used for classifying parameters 
at each iteration into optimisable and decreasable and the different update rules for 
the two classes of parameters. Convergence of the method is analyzed in Sect. 2.1. 
Section 3 presents a set of illustrative examples of the behaviour of prunAdag when 
applied to random least-squares, sparse signal recovery, sparse coding step in diction-
ary learning, and binary classification with logistic loss function. A brief conclusion 
is provided in Sect. 4.

1.3  Notations

 Throughout the paper we adopt the following notations. At the k-th iteration, the gra-
dient g of the function f evaluated at the current iterate xk is denoted as gk = g(xk) 
and its i-th component by gi,k. Moreover, the superscript T denotes the transpose and 
vi,k denotes the i-th component of a vector vk ∈ IRn. Unless specified otherwise, 
∥ · ∥ is the Euclidean norm on IRn and ∥x∥I = ∥xi∈I∥ is the Euclidean norm when 
we consider only the indices in I. We denote as AC  the complementary set of A in 
{1, . . . , n}. We use the notation ⌈x⌉ for the minimum integer greater than x. Given 
two sequences {αk} and {βk} of non-negative reals, we also say that αk is O(βk) is 
there exists a finite constant κ such that limk→∞(αk/βk) ≤ κ.

2  A first-order sparsity inducing adaptive gradient method without 
regularisation

In the following discussion, we make the standard assumptions on problem (1) for 
first-order convergence rate analysis. 

AS.1: the objective function f is continuously differentiable;
AS.2: its gradient g is Lipschitz continuous with Lipschitz constant L ≥ 0, that is 

	 ∥g(x) − g(y)∥ ≤ L∥x − y∥

 for all x, y ∈ IRn;
AS.3: there exists a constant flow such that, for all x, f(x) ≥ flow.
We now motivate and describe the prunAdag method. It falls in the class of prun-

ing-aware methods that, at a given iteration, first classifies the variables/parameters 
in relevant and irrelevant before updating them.

Following Zimmer et al. [2, 33] and given a target T for the cardinality of the 
relevant parameters,1 we first define the set Rk of Relevant parameters as the set 
of cardinality T of indices corresponding to the first T among the largest directional 
derivatives in magnitude at the kth iterate:

1 The integer parameter T is fixed during the iterations.
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	 Rk
def={i ∈ {1, . . . , n} | |gi,k| is one of the T largest components of |gk|}.� (4)

The parameters indexed by RC
k  are thus considered irrelevant. The idea is then to 

optimize on the relevant parameters and to reduce the magnitude of the others. In 
our approach, optimisation is performed by applying the component-wise version of 
Adagrad, in which the step si,k in the i-th variable is given by

	
si,k = − gi,k

wO
i,k

,� (5)

for some suitably chosen weight wO
i,k derived from the history of past gradients. 

However, it may happen that the step (5) that would be taken by the optimizer for 
some of the irrelevant parameters does actually reduce their magnitudes: this happens 
when the signs of xi,k and gi,k coincide. Thus it makes sense to take the optimisa-
tion step on these parameters as well, provided it remains within reasonable bounds 
compared to |xi,k|. More formally, we deem the i-th component (i ∈ RC

k ) to be “O
ptimisable" (in the sense that its update can be performed by (5)) if it belongs to the 
set Ak of Acceptable indices

	
Ak

def=

{
i ∈ RC

k | sign(gi,k) = sign(xi,k) and ai,k ≤

∣∣∣∣∣
gi,k

wO
i,k

∣∣∣∣∣ ≤ bi,k

}
,� (6)

where ai,k and bi,k are suitable bounds. As a consequence, the index set of the opti-
misable parameters at iteration k is given by

	 Ok
def=Rk ∪ Ak.� (7)

We also see that the “decreasable" parameters, whose magnitude we wish to Decrease 
by other means than (5), have indices in the set Dk = RC

k \ Ak. We intentionally do 
not impose any restrictions on the bounds ai,k and bi,k in (6) as the general analysis, 
including the convergence analysis, of prunAdag does not depend on them. In prac-
tice, one can choose ai,k as a fraction of the absolute value of xi,k. Further practical 
examples are given in Sect. 3 (see Table 1).

While the course of action for the “optimisable" parameters is clear (apply (5)), 
what to do with the other parameters is, at this stage, less obvious. Our proposal is 

ai,k bi,k

prunAdag-V1 ∣∣∣ xi,k

k + 1

∣∣∣ · ∥gk∥Rk

∥xk∥Sk

+∞

prunAdag-V2 ∣∣∣ xi,k

k + 1

∣∣∣ +∞

prunAdag-V3 ∣∣∣ xi,k

k + 1

∣∣∣ · ∥gk∥Rk

∥xk∥Sk

|xi,k|

prunAdag-V4 ∣∣∣ xi,k

k + 1

∣∣∣ |xi,k|

Table 1  Four versions of 
prunAdag, depending on 
the choice of the bounding 
sequences ai,k  and bi,k  used in 
Step 3 of Algorithm 2.1
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to extend our Adagrad-based approach by defining a step for the parameters in Dk 
which is also of the form (optimality measure/weight), where now the optimality 
measure is no longer given by gradient values, but by the magnitude of the irrelevant 
parameters themselves (as we wish to drive them to zero, if possible), that is a step 
of the form

	
sD

i,k = − xi,k

wD
i,k

,� (8)

where the weight wD
i,k is now derived from the history of past irrelevant values of the 

i-th parameter.
We are now ready to state the prunAdag algorithm more formally in Algorithm 

2.1.

Algorithm 2.1  prunAdag

Step 0: Initialization. A starting point x0, a target number of relevant parameters 
T ∈ {1, . . . , n}, a constant ς ∈ (0, 1), and two initial weight vectors wO

i,−1 = ς  and 
wD

i,−1 = ς, for i = 1, . . . , n are given. Set k = 0.

Step 1: Select relevant parameters. Compute the gradient gk and define 

	 Rk = {i ∈ {1, . . . , n} | |gi,k| is one of T largest components of |gk|}

Step 2: Optimisation weights. Compute 

	 wO
i,k =

√
(wO

i,k−1)2 + g2
i,k (i ∈ {1, . . . , n})� (9)

Step 3: Classify components. Define ai,k, bi,k ≥ 0 for i ∈ RC
k , and 

	
Ak =

{
i ∈ RC

k | sign(xi,k) = sign(gi,k) and ai,k ≤

∣∣∣∣∣
gi,k

wO
i,k

∣∣∣∣∣ ≤ bi,k

}
.

 Then set Ok = Rk ∪ Ak and Dk = OC
k .

Step 4: Compute a step for the optimisable components. Compute 

	
si,k = − gi,k

wO
i,k

(i ∈ Ok).� (10)

Step 5: Compute a step for the decreasable components. Compute 

	
wO

i,k = wO
i,k−1, wD

i,k =
√

(wD
i,k−1)2 + x2

i,k, sL
i,k = − xi,k

wD
i,k

(i ∈ Dk)� (11)
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	 wD
i,k = wD

i,k−1 (i ∈ Ok).� (12)

 Compute a step si,k for all the decreasable components in Dk such that 

	 |si,k| ≤ |sL
i,k| (i ∈ Dk)� (13)

	

∑
i∈Dk

gi,ksi,k ≤ 0.� (14)

Step 6: New iterate. Define 

	 xk+1 = xk + sk,

 increment k by one and return to Step 1.
A few comments are useful after this formal description. 

1.	 The weights defined in (9) and (11) superficially look identical to weights used 
by Adagrad. There is however a crucial difference for our purpose: each of these 
updating formula only selects in the past those iterations for which the consid-
ered component (the i-th) is either optimisable (for the former) or decreasable 
(for the latter). More specifically, if we set 

	
gO

i,k =
{

gi,k i ∈ Ok
0 otherwise, xD

i,k =
{

xi,k i ∈ Dk
0 otherwise, � (15)

	  then one verifies, using the first part of (11) and (12), that 

	
wO

i,k =

√√√√ς +
k∑

j=0
(gO

i,j)2 and wD
i,k =

√√√√ς +
k∑

j=0
(xD

i,j)2.� (16)

2.	 We have left the choice of the exact technique to define sD
k  very general, as long 

as (13–14) hold (these conditions can be interpreted as “trust-region" conditions 
with radius |sL

i,k|). One simple technique is, for example, to set 

	
sD

i,k =
{

−sign(xi,k) · min[ai,k, |sL
i,k|] i ∈ {i ∈ Dk | sign(xi,k) = sign(gi,k)}

0 otherwise. �(17)

3.	 The specification of the set Ak is not strictly necessary in our convergence theory 
below, but our experience indicates that extending the set of optimisable param-
eters from Rk to Rk ∪ Ak is beneficial in practice, as illustrated in Sect. 3.1.1.

2.1  Convergence analysis

First, we assume that the sequence produced by prunAdag is bounded, that is, 
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AS.4: The sequence produced by Algorithm 2.1 is bounded, i.e. for some κx > 0, 
|xi,k| ≤ κx for every i = {1, . . . , n} and all k ≥ 0.

AS.4 is needed to provide an upper bound for the contribution given by the update 
of the decreasable variables/parameters which cannot be related to the gradient norm, 
since the update does not involve any gradient information. Moreover, our frame-
work reduces the magnitudes of the decreasable parameters at every iteration, thus it 
is reasonable to assume that the magnitudes of the parameters remain finite. We also 

assume, without loss of generality, that ς ≤
( 8nL

3
)2.

We start the convergence analysis of the prunAdag algorithm by stating a lemma 
characterizing the descent properties of the method.

Lemma 2.1  Suppose that AS.1 and AS.2 hold. Then we have that, for all j ≥ 0 ,

	
f(xj+1) ≤ f(xj) −

n∑
i=1

(gO
i,j)2

wO
i,j

+ L

2

n∑
i=1

(gO
i,j)2

(wO
i,j)2 + L

2

n∑
i=1

(xD
i,j)2

(wD
i,j)2 � (18)

and for all k ≥ 0

	
f(x0) − f(xk+1) ≥

k∑
j=0

n∑
i=1

(gO
i,j)2

wO
i,j

− L

2

k∑
j=0

n∑
i=1

(gO
i,j)2

(wO
i,j)2 − L

2

k∑
j=0

n∑
i=1

(xD
i,j)2

(wD
i,j)2 .�(19)

Proof  Using (14), we have that, at each iteration j of Algorithm 2.1,

	
gT

j sj =
∑
i∈Oj

gi,jsi,j +
∑
i∈Dj

gi,jsi,j ≤
∑
i∈Oj

gi,jsi,j < 0.� (20)

Therefore, using Assumptions AS.1 and AS.2, (20), (10), (11), and (14) we derive 
that

	

f(xj+1) ≤ f(xj) + gT
j sj + L

2
||sj ||2

≤ f(xj) +
∑
i∈Oj

gi,jsi,j + L

2
∑
i∈Oj

s2
i,j + L

2
∑
i∈Dj

s2
i,j

≤ f(xj) −
∑
i∈Oj

g2
i,j

wO
i,j

+ L

2
∑
i∈Oj

g2
i,j

(wO
i,j)2 + L

2
∑
i∈Dj

x2
i,j

(wD
i,j)2

= f(xj) −
n∑

i=1

(gO
i,j)2

wO
i,j

+ L

2

n∑
i=1

(gO
i,j)2

(wO
i,j)2 + L

2

n∑
i=1

(xD
i,j)2

(wD
i,j)2

� (21)

and (18) therefore holds. Finally, summing for j = 0, . . . , k gives (19). � □
We next proceed by recalling the following lemma due to [42–44], which is crucial 

in the derivation of upper bounds for the second and third terms in equation (19). The 
proof of the lemma can be found in [10, Lemma 3.1].
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Lemma 2.2  Let {ck}k≥0  be a non-negative sequence and ξ > 0 . Then

	

k∑
j=0

cj

(ξ +
∑j

ℓ=0 cℓ)
≤ log

(
ξ +

∑k
j=0 cj

ξ

)
.� (22)

We now state our main result on the convergence rate of prunAdag, partly inspired 
by [10, Theorem 3.2].

Theorem 2.3  Suppose that AS.1–AS.4 hold. Assume that Rk defined in (4), has car-
dinality T for every k and that the prunAdag algorithm is applied to problem (1). If 
we define Γ0

def=f(x0) − flow, then,

	
average

j∈{0,...,k}
∥gj∥2 ≤ ⌈n/T ⌉ θ(k)

k + 1 � (23)

with

	
θ(k)def= max

{
ς,

ς

2
e

Γ0
nL , 32n2L2

∣∣∣∣W−1

(
−

√
ς

8nL

)∣∣∣∣
2

, 2
(

Γ0 + nL log
(

1 + (k + 1)κ2
x

ς

))2}
,�(24)

where W−1 is the second branch of the Lambert function [45].

Proof  Let us first observe that bounding the average of ∥gO
j ∥2 allows us to derive 

a bound for the average of the norm of the actual gradient ∥gj∥2. Indeed, since 
Rj ⊆ Oj  contains the largest components of the gradient at iteration j and its cardi-
nality is always equal to T, we have that

	
∥gj∥2 ≤ ⌈n/T ⌉

∑
i∈Rj

g2
i,j ≤ ⌈n/T ⌉

∑
i∈Oj

g2
i,j = ⌈n/T ⌉∥gO

j ∥2

and therefore

	
average

j∈{0,...,k}
∥gj∥2 ≤ ⌈n/T ⌉ average

j∈{0,...,k}
∥gO

j ∥2.� (25)

Now, using (19) and the fact that the sequence wO
i,k in (10) is increasing in k for every 

i, we have that

	
f(xk+1) ≤ f(x0) −

k∑
j=0

∥gO
j ∥2

maxi∈{1,...,n} wO
i,k

+ L

2

k∑
j=0

n∑
i=1

(gO
i,j)2

(wO
i,j)2 + L

2

k∑
j=0

n∑
i=1

(xD
i,j)2

(wD
i,j)2 ,

from which we obtain that
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k∑
j=0

∥gO
j ∥2

maxi∈{1,...,n} wO
i,k

≤ Γ0 + L

2

k∑
j=0

n∑
i=1

(xD
i,j)2

(wD
i,j)2 + L

2

k∑
j=0

n∑
i=1

(gO
i,j)2

(wO
i,j)2 .� (26)

We then use Lemma 2.2 with cj = (gO
i,j)2 and ξ = ζ, and the first part of (16), yielding

	

n∑
i=1

k∑
j=0

(gO
i,j)2

(wO
i,j)2 =

n∑
i=1

k∑
j=0

(gO
i,j)2

ς +
∑j

ℓ=0(gO
i,ℓ)2

≤
n∑

i=1
log

(
1
ς

(
ς +

k∑
ℓ=0

(gO
i,ℓ)2

))

≤ n log

(
1 + 1

ς

k∑
ℓ=0

∥gO
ℓ ∥2

)
.

�(27)

Using again Lemma 2.2, this time with cj = (xD
i,j)2, the second part of (16) and 

Assumption AS.4, we deduce that

	

n∑
i=1

k∑
j=0

(xD
i,j)2

(wD
i,j)2 =

n∑
i=1

k∑
j=0

(xD
i,j)2

ς +
∑j

ℓ=0(xD
i,ℓ)2

≤
n∑

i=1
log

(
1
ς

(
ς +

k∑
ℓ=0

(xD
i,ℓ)2

))

≤ n log
(

1 + (k + 1)κ2
x

ς

)
.

�(28)

Combining (26), (27), (28) therefore gives that

	

k∑
j=0

∥gO
j ∥2

maxi∈{1,...,n} wO
i,k

≤ Γ0 + nL

2
log

(
1 + (k + 1)κ2

x

ς

)
+ nL

2
log


1 + 1

ς

k∑
j=0

∥gO
j ∥2


 ,�(29)

where the first logarithmic term depends on the upper bound on the entries of the 
iterate in Assumption AS.4, while the second depends on the sum of the norms of the 
past optimisable gradients.

We now proceed by analyzing two separate cases.
Case 1. Assume first that the contribution given by the optimisable gradients 

exceeds that of the first logarithmic term in k, that is

	
log


1 + 1

ς

k∑
j=0

∥gO
j ∥2


 ≥ log

(
1 + (k + 1)κ2

x

ς

)
.

Then, the inequality in (29) becomes

	

k∑
j=0

∥gO
j ∥2

maxi∈{1,...,n} wO
i,k

≤ Γ0 + nL log


1 + 1

ς

k∑
j=0

∥gO
j ∥2


 .� (30)

Assume now that
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k∑
j=0

∥gO
j ∥2 ≥ max

[
ς,

ς

2
e

Γ0
nL

]
,� (31)

which implies

	
1 + 1

ς

k∑
j=0

∥gO
j ∥2 ≤ 2

ς

k∑
j=0

∥gO
j ∥2 and Γ0 ≤ nL log


2

ς

k∑
j=0

∥gO
j ∥2


 ,

and observe from the first part of (16) that, for all i ∈ {1, . . . , n} and all k,

	
wO

i,k ≤

√√√√ς +
k∑

j=0
∥gO

j ∥2.� (32)

Thus, from (30), (31), and (32) we obtain that

	

∑k
j=0 ∥gO

j ∥2
√

2
∑k

j=0 ∥gO
j ∥2

≤ 2nL log


2

ς

k∑
j=0

∥gO
j ∥2


 ,

that is

	

√
ς

2

√√√√2
ς

k∑
j=0

∥gO
j ∥2 ≤ 4nL log




√√√√2
ς

k∑
j=0

∥gO
j ∥2


 .� (33)

If we now define

	
γ1 =

√
ς

2
, γ2 = 4nL, u =

√√√√2
ς

k∑
j=0

∥gO
j ∥2,� (34)

we first note that our assumption that ς ≤ ( 8nL
3 )2 ensures that γ2 > 3γ1. Further-

more, the inequality (33) can then be rewritten as

	 γ1u ≤ γ2 log(u).� (35)

Let us denote by ψ(u)def=γ1u − γ2 log(u). Since γ2 > 3γ1, the equation ψ(u) = 0 
admits two roots u1 ≤ u2 and (35) holds for u ∈ [u1, u2]. The definition of u2 then 
gives that

	
log(u2) − γ1

γ2
u2 = 0,
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which is

	 u2e− γ1
γ2

u2 = 1.

Setting z = − γ1
γ2

u2, we obtain that

	
zez = −γ1

γ2
.

Thus z = W−1(− γ1
γ2

) < 0, where W−1 is the second branch of the Lambert function 
defined over [− 1

e , 0). As − γ1
γ2

≥ − 1
3 , z is well defined and thus

	
u2 = −γ2

γ1
z = −γ2

γ1
W−1

(
−γ1

γ2

)
> 0.

Therefore, using (34),

	

k∑
j=0

∥gO
j ∥2 = ς

2
u2

2 = 32n2L2
∣∣∣∣W−1

(
−

√
ς

8nL

)∣∣∣∣
2

.

Hence, taking the average gives that

	
average

j∈{0,...,k}
∥gO

j ∥2 ≤ 32n2L2
∣∣∣∣W−1

(
−

√
ς

8nL

)∣∣∣∣
2

· 1
k + 1

.� (36)

Suppose now that (31) fails. Then, obviously,

	
average

j∈{0,...,k}
∥gO

j ∥2 ≤ max
[
ς,

ς

2
e

Γ0
nL

]
· 1

k + 1
.� (37)

Case 2. Consider now the case where

	
log


1 + 1

ς

k∑
j=0

∥gO
j ∥2


 ≤ log

(
1 + (k + 1)κ2

x

ς

)
.

Then inequality in (29) becomes

	

k∑
j=0

∥gO
j ∥2

maxi∈{1,...,n} wO
i,k

≤ Γ0 + nL log
(

1 + (k + 1)κ2
x

ς

)
.� (38)

If, on one hand,
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k∑
j=0

∥gO
j ∥2 ≥ ς,� (39)

then we have that

	

1√
2

∑k
j=0 ∥gO

j ∥2
√∑k

j=0 ∥gO
j ∥2

≤ Γ0 + nL log
(

1 + (k + 1)κ2
x

ς

)
,

that is

	

k∑
j=0

∥gO
j ∥2 ≤ 2

(
Γ0 + nL log

(
1 + (k + 1)κ2

x

ς

))2

.� (40)

Taking the average then gives that

	
average

j∈{0,...,k}
∥gO

j ∥2 ≤ 2
(

Γ0 + nL log
(

1 + (k + 1)κ2

ς

))2

· 1
k + 1

.� (41)

If, on the other hand, (39) does not hold, then

	
average

j∈{0,...,k}
∥gO

j ∥2 ≤ ς

k + 1
.� (42)

We finally deduce (23) by considering the largest upper among (36), (37), (41), (42) 
and using (25). � □
Theorem 2.3 demonstrates that prunAdag has a global rate of convergence in 
O(log(k)/

√
k + 1), in contrast with the original Adagrad algorithm for which the 

average gradient norm decreases like O(1/
√

k + 1). Therefore, prunAdag can in 
general be (marginally) slower than the original Adagrad algorithm. This is due to the 
fact that deviating the gradient flow to reduce the magnitude of decreasable param-
eters comes at a convergence rate cost. Indeed, Lemma 2.1 shows that the decrease 
of the function at each iteration, expressed by equation (19) is governed by two posi-
tive sums in the right-hand side, depending on the gradient of optimisable compo-
nents gO

i,k and on the magnitudes of decreasable components xD
i,k. By contrast, the 

descent lemma (Lemma 2.1 in [8]) of first-order OFFO methods, such as Adagrad, 
only contains a single positive sum depending on the gradient entries. It is easy to 
see from equation (19) that the function value eventually decreases monotonically if 
the two positive sums in the right-hand side are dominated by the first, negative sum. 
However, we might expect a monotonic decrease of the function for large enough 
weights for the Adagrad algorithm, while the non-monotonic behaviour may persist 
until convergence for prunAdag. This is because the magnitude of the decreasable 
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components in Dk is (hopefully) small at convergence but often non zero for all of 
them. Therefore, the second positive sum in (18), depending on the decreasable com-
ponents in Dk, might remain significant, even for large k, but its growth is fortunately 
bounded by a term in O(log(k)).

	● If we start from an initial point that is far from any stationary point of the prob-
lem, we might expect the largest components of the gradient to be large in mag-
nitude for several iterations, potentially exceeding the magnitudes of the decreas-
able components of the iterate. This is exactly the scenario described in Case 1 of 
the proof of Theorem 2.3. Consequently, we observe an empirical Adagrad-like 
almost linear decrease, as suggested by Eqs. (36) and (37), until the contribu-
tion of the decreasable components xD

i,k exceeds that of the optimisable gradient 
components gO

i,k.

	● Theorem 2.3 proves that the average norm of the gradient converges to zero. 
However, we cannot expect the same behaviour for the decreasable components 
of the iterates, which are only likely to be small in magnitude at convergence. 
This means that after a certain iteration, the contribution of the optimisable gra-
dient will be smaller than that of the decreasable components in Eq. (26). Thus, 
Case 2 in the proof typically occurs for large k. As a consequence, we may then 
expect, for a sufficiently large k, a decrease of the order of log(k)/

√
k + 1 as sug-

gested by Eq. (41).

Both these observations suggest that we might expect a faster decrease during the 
first iterations, followed by a potential slowdown when ∥gO

k ∥ becomes small, as can 
be observed for the non-rescaled prunAdag-V2 and prunAdag-V4 in Figs. 4 and 5 in 
the next section. In general, the rescaling of the step in the decreasable components 
promotes a faster convergence and this behaviour is not observed. Nevertheless, a 
fast convergence is not the only purpose of a pruning-aware method since robustness 
to pruning also needs to be considered.

3  Numerical experiments

We now present numerical tests on a variety of problems from different applications 
originating in

	● a standard class of randomly generated under-determined linear least-squares 
problems,

	● the SPARCO library for sparse signal recovery [46] (as supplied by S2MPJ [47]), 
which contains test cases from signal processing applications specifically de-
signed for sparse optimisation,

	● the “sparse coding step" in dictionary learning problem,
	● minimizing the logistic function in binary classification problems on several 

well-know data sets.
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These test problems were chosen to test if prunAdag is able to enhance convergence 
to a solution which is robust to pruning. (It is not our purpose to compare prunAdag 
to state-of-the-art techniques in each of the applications considered.)

We implemented four versions of prunAdag with different choices of ai,k and bi,k 
at Step 3 of Algorithm 2.1. Defining

	 Sk
def={i ∈ RC

k | sign(xi,k) = sign(gi,k)},

we considered the rules described in Table 1 where Rk is given in (4), yielding the 
corresponding implementations prunAdag-V1, prunAdag-V2, prunAdag-V3 and 
prunAdag-V4.

In all four versions, the lower bounding sequence ai,k represents a fraction of the 
absolute value of i-th component of the iterate. In prunAdag-V2 and prunAdag-V4, 
the sequence linearly decreases with the iteration number, while in prunAdag-V1 and 
prunAdag-V3, in addition to the linearly decreasing factor, we rescale the sequence 
to match the magnitude of the gradient gk in Rk. A similar rescaling of the learning 
rate has proven effective in SFW [2, 33]. In our experience, choosing a lower bound 
sequence ai,k that decreases as 1/k helps to make the convergence of the method 
faster and reduces the oscillations due to the non-monotone behaviour of the algo-
rithm. On the other hand, the upper bounding sequence bi,k in prunAdag-V3 and 
prunAdag-V4 is set to be equal to the iterate magnitude |xi,k|. This choice prevents 
the Adagrad-like step from exceeding |xi,k|, thus avoiding sign changes for the com-
ponents in Ak. Allowing potential sign changes in some components can be obtained 
by choosing any bi,k > |xi,k|, e.g. as in prunAdag-V1 and prunAdag-V2 where we 
do not consider any upper bound on bi,k (bi,k = ∞), resulting in a larger set Ak, as 
Fig. 2 shows. This implies that the number of optimisable components is then larger 
and the algorithm’s speed is potentially enhanced. Conversely, the number of indices 
in Dk is smaller, potentially leading to less effective pruning. We illustrate the evalu-
ation of the sets Ok, Ak and Dk for the four versions of prunAdag in Sect. 3.1.2.

In addition, we consider a fifth version of prunAdag denoted Relevant only, which 
is identical to prunAdag, except that Step 3 is reduced to the definitions Ok = Rk 
and Dk = RC

k . Thus no “acceptable" parameter is added to the list of the optimisable 
ones in Relevant only.

We also implemented the deterministic version of the Frank-Wolfe method 
of [2] for unstructured pruning, considering two learning rates ηk in (3): a lin-
early decreasing rate ηk = 1/(k + 1) (FW1) and the adaptively rescaled rate  [33] 
ηk = min

[
β∥gk∥Rk

∥vk−xk∥ , 1
]
, where vk is given in (2) and β ∈ (0, 1) (FW2). Finally, 

prunAdag reduces to the standard Adagrad algorithm if one chooses T = n and 
avoids performing any classification of the parameters. We set ς = 1/100 as for 
prunAdag and the Adagrad implementations.

The algorithms are implemented in MATLAB R2021b on a 64-bit Samsung/Gal-
axy with 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz and 8 GB of RAM, 
under Windows 11 version 23H2.

All experiments are randomly initialized with a normalized starting point with 
exactly T nonzero entries, representing a feasible point for FW1 and FW2 when-
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ever the T-support-norm-ball has radius greater than 1. We performed 20 runs per 
test problem and report the complete averaged results in Tables 2, 3 and 4. The best 
results achieved among all the methods are highlighted in bold in the Tables. In what 
follows, we also show plots for a single run which are selected to visualize the typical 
behaviour of the methods. We set T = n/10 in both our method and the FW variants 
(but we propose an analysis on the impact of the parameter T in Sect. 3.1.3). We also 
tuned, for each set of experiments, the stepsize τ  in the FW implementations (named 
τ1 and τ2 in FW1 and FW2, respectively) and the learning parameter β of FW2 by 
trial and error. In the comparison of prunAdag with FW, each algorithm is terminated 
when either ∥gk∥ ≤ 10−9 or when 104 iterations have been performed, unless oth-
erwise specified. When analyzing the behaviour of prunAdag and the comparison 
among its variants, we report plots where fewer iterations were run for better plot 
readability (see Figs. 1, 2, 3).

Throughout this section we perform pruning on the solution after optimisation 
using two different strategies, depending on the analysis considered. Therefore, either 
we fix a scalar threshold δ and we remove all the components below this threshold, or 
we choose a sparsity level of the solution σ (in percentage) and we set the threshold δ 
to achieve a σ-sparse solution after pruning. (Note that the sparsity σ of the solution 
after pruning and the percentage of parameters removed are equivalent quantities; 
therefore, we will use the two terms interchangeably.)

We now describe two performance measures that will be used below to discuss the 
numerical results. Given a fixed δ > 0, let x be the approximated solution returned 
by some pruning-aware algorithm and denote by x̄ the pruned version of x, that is 
the vector x whose components with magnitude less than δ have been zeroed out. 
We then define a quality measure to evaluate the robustness of the pruning approach 
considering

	 ρ
def=∥g(x̄)∥ and ω

def=
√

|f(x̄) − f(x)|.� (43)

Both these quantities provide estimates of how much pruning perturbs the solution 
from x. A small value for ρ means that the pruned solution x̄ is close to stationarity, 
while a small ω means that the objective function’s value at the pruned solution does 
not differ much from that at x.

3.1  Random linear least-squares

In the first set of experiments, we consider a class of randomly generated linear least-
squares of the form

	
f(x) = 1

2
∥Ax − b∥2,� (44)

with five different matrices A ∈ IRm×n as in [48] and [49]. Specifically, we choose 
six different classes (A1,...,A6) of matrix A such that

A1) A is randomly generated from a normal Gaussian distribution,
A2) A is a random orthogonal matrix,
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A3) A is random and has orthogonal columns,
A4) A is random and has orthogonal rows,
A5) A ∈ (0, 1) generated from a Bernoulli distribution,
A6) A is obtained from the discrete cosine transform matrix of dimension n.
We set m = 100 and n = 1000, making the problem under-determined with a rel-

atively large-dimensional subspace of solutions. We then generate a random solution 
x∗ from a standard normal distribution (x∗ = randn(n, 1) in MATLAB notation) 
and compute the right-hand side as b = Ax∗.

3.1.1  Optimisable versus relevant

We first use the random least-squares problem A3 to show the advantage of extending 
the parameter classification from relevant/irrelevant to optimisable/decreasable. Fig-
ure 1 shows the results of running prunAdag-V1, prunAdag-V2, prunAdag-V3 and 
prunAdag-V4 (which differ by the choice of the bounding sequences ai,k and bi,k as 
defined in Table 1) in comparison with the Relevant only version.

The contrast between Relevant only and the other version is striking in terms of 
achieved number of components below the sparsity threshold and, consequently, of 
robustness to pruning. Not only Relevant only is much less efficient in this respect, 
but it does not converge faster to a stationary point than the other versions (except 
when compared to prunAdag-V3, which achieves the best sparsity). In our experi-
ence, this behaviour is quite general and, in our view, fully justifies the introduction 
of Ak in Step 3.

3.1.2  Classification and convergence for the four prunAdag versions

We next illustrate the evolution of the cardinality of the index sets Ok, Ak and Dk 
along iterations for the four versions of prunAdag.

Figure 2 shows the cardinality of the sets Ok, Ak, and Dk for all the versions of 
prunAdag   when solving the random least-squares problem A1. As shown by this 
example, the cardinality does vary significantly from version to version, and we may 
expect these variations to affect performance. We observe that robustness to pruning 
is unsurprisingly better when the size of Dk is larger, favoring prunAdag-V3 and 
prunAdag-V4 on average. If we now turn to speed of convergence to stationary points, 
the conclusion is less clear-cut. While, for prunAdag-V1 and prunAdag-V3 (that are 
the methods using gradient rescaling in ai,k), the speed seems to improve with the 
size of Ak, the effect is more problem-dependent for the (unscaled) prunAdag-V2 
and prunAdag-V4.

3.1.3  Influence of T

As can be expected, the choice of the target number of relevant parameters T does 
influence the behaviour of the four versions of prunAdag. As we now show for prob-
lem A1 in Fig. 3, this effect may vary from version to version. Indeed, asking for a 
small T does not necessarily result in a large final number of parameters with small 
magnitude, as is clear for the (unscaled) prunAdag-V2. Fortunately, the behaviour 
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of the (scaled) prunAdag-V3 is typically more consistent. For problem A1 and in 
general, choosing a smaller T then results in a larger number of solution components 
whose absolute value is below the sparsity threshold, but, as can be expected, at the 
price of slower convergence (see the two bottom panels of Fig. 3).

3.1.4  prunAdag, FW and Adagrad

We now turn to results obtained when running the four versions of prunAdag along 
FW and the standard Adagrad, using τ1 = 50 for FW1, τ2 = 100, and β = 0.001 for 
FW2. Table 2 reports a comparison between the four versions of prunAdag, FW1, 
FW2, and Adagrad, and displays, for each random matrix and each algorithm, the 
pruning quality measure ρ defined in (43), averaged over 20 runs, for 5 different 
percentages σ of pruned components. In summary, these results show that, when the 
percentage of pruned components σ is below 50%, prunAdag-V3 is the most reliable 
method in five of the six problems considered, followed by prunAdag-V4. On the 
contrary, prunAdag-V1 is extremely reliable when the percentage of pruned param-
eters is below 30%, but its performance degrades rapidly as this percentage increases. 
For very aggressive pruning, that is for σ around 70%, FW1, FW2 and prunAdag-
V4 exhibit the best results, making those methods particularly suitable for applica-
tions where sparsity is to be preferred to high accuracy. We illustrate these results by 
graphically detailing, in Fig. 4, the (typical) results obtained for problem A2.

This figure shows that version prunAdag-V1 is the fastest algorithm, perform-
ing comparably to the original Adagrad algorithm. However, it is the less robust to 
pruning among all prunAdag versions. prunAdag-V3 satisfies the stopping criterion 
on the gradient norm while being by far the best choice in terms of robustness to 
pruning up to 50% of sparsity. Despite their poor performance for lower percentages 
of pruned components, FW1 and FW2 remain a valid alternative for very aggressive 
pruning, even though their convergence is the slowest among the algorithms consid-
ered. However, one should remember that FW is quite sensitive to the choice of its 
parameters and those used here have been tuned once for all the least-square prob-
lems considered (faster convergence can sometimes be achieved by further problem-
by-problem tuning).

3.2  SPARCO problems

The aim of sparse signal recovery is finding a sparse representation of an observed 
noisy signal b as a linear combination of some redundant dictionary A. Typically, 
the dictionary is a wide matrix with more columns than rows, consisting of various 
bases such as wavelet, discrete cosine, and Fourier. The SPARCO library [46] as sup-
plied by S2MPJ [47] includes examples of these problems for different dictionaries. 
Given a sparse vector x∗, the observation is generated as b = Ax∗ + r, where r is 
additive noise vector of appropriate dimension and A is a fixed dictionary. The aim 
is to recover a robust solution by solving the related under-determined least-squares 
and using the prunAdag algorithm instead of enhancing sparsity using a regularizing 
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term2 For these tests, we set the FW parameter to τ1 = 100, τ2 = 100 and β = 0.001. 
The complete results for different percentages σ of pruned components are given in 
Table 3. We observe that prunAdag-V3 is the most robust algorithm in four out of five 
considered examples when the percentage of pruned components is below 50%. As 
for random-least squares, FW1 and prunAdag-V3 are the most reliable for a percent-
age of pruned components σ exceeding 50%, thus they represent a better choice for 
very aggressive pruning.

Figure 5 shows that FW2 is the fastest algorithm to converge; however, it does 
not exhibit strong robustness properties, showing a similar behaviour to Adagrad 
algorithm. By contrast, prunAdag-V3 reaches the tolerance set for the norm of the 
gradient and it has the lowest value of the error measure ρ up to 50% of pruned com-
ponents and the lowest value for error measure ω up to 40% of pruned components. 
All versions of prunAdag exhibit more robust performance than Adagrad algorithm.

2 Since our focus is robustness to pruning, we deliberately ignore the robustness-to-noise issue that might 
occur if we solve the non-regularised least-squares. However, as long as the assumptions AS.1, AS.2, and 
AS.3 are satisfied, any regularisation term can be added to the objective function.

Table 4  Binary classification. Percentage of correctly classified samples in the testing set
Problem σ (%) V1 (%) V2 (%) V3 (%) V4 (%) FW1 (%) FW2 (%) Adagrad (%)
GISETTE 75 93.75 94.50 93.68 94.51 94.66 94.30 94.13

80 93.75 94.42 93.55 94.33 94.66 94.26 93.61
85 93.40 94.03 93.10 94.05 94.68 94.35 92.45
90 92.63 93.55 92.20 93.70 94.31 93.85 89.76
95 87.13 90.86 83.73 89.53 91.81 90.20 83.70

MNIST 75 81.90 81.91 80.60 80.46 83.65 81.85 80.15
80 81.48 81.53 80.48 80.41 83.33 81.21 79.45
85 80.43 80.53 80.35 80.12 82.80 80.83 77.32
90 78.02 78.15 78.83 78.85 81.51 79.02 75.68
95 72.26 72.38 74.11 73.92 76.60 72.48 66.06

REGEDO 70 96.36 95.93 96.36 96.33 97.33 97.33 96.20
75 96.33 95.93 96.50 96.67 97.33 97.33 95.86
80 96.20 95.83 96.23 96.76 97.33 97.33 96.00
85 96.76 96.10 96.96 96.60 97.33 97.46 93.06
90 95.90 95.67 84.50 96.40 97.33 98.60 65.20

A9A 65 81.65 82.16 81.87 81.97 83.07 83.33 76.93
70 81.33 81.34 81.53 81.67 83.37 83.10 72.78
75 80.68 80.86 80.77 80.22 83.40 83.03 71.25
80 79.53 78.63 79.55 79.01 82.70 82.85 71.25
85 75.83 75.95 76.20 76.23 82.36 81.60 72.76

MOLECULE 65 79.30 78.77 78.70 78.39 78.53 79.54 65.00
70 77.51 78.11 78.43 78.18 78.56 78.95 62.76
75 76.11 76.22 78.04 78.28% 78.32 79.12 62.86
80 74.65 74.90 77.80 78.11 76.74 75.17 62.51
85 71.01 70.83 75.69 76.53 76.50 73.00 60.73
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3.3  Sparse coding in dictionary learning

Let Y be a given dataset, the aim of dictionary learning is to find a dictionary D and 
a sparse coefficient matrix X, such that Y ≈ DX . This problem is frequently solved 
by alternating optimisation and we focus on the so-called sparse coding step, that is, 
given D we aim at finding a sparse X such that Y ≈ DX . Given k > 0, for each ele-
ment of the dataset y (column of Y) and positive integer m, the standard formulation 
of the sparse coding step is the following

	
min

x
∥y − Dx∥2 such that ∥x∥0 ≤ m,� (45)

where ℓ0 denotes the zero-norm of a vector, defined as the number of its nonzero 
entries. We test our framework by addressing problem (45) removing the explicit 
constraint and using prunAdag to find a possibly dense solution that is robust to prun-
ing. This approach has the advantage of allowing a posteriori pruning with different 
sparsity levels.

Fig. 1  Effect of introducing the class of optimisable parameters within the minimization framework 
of prunAdag. a Gradient norm (solid line) on the left y-axis and percentage of parameters below 
δ = 10−3 (dotted line) on the right y-axes along the iterations. b Error measures ρ (solid) and 
ω (dashed) for different percentages of pruned components after the optimisation. Each algorithm runs 
for 5000 iterations or until convergence (Random least-squares A3)
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In our tests, we consider a subset of the MNIST data set [14] and we generated 
D in problem (45) by using KSVD [50], the state-of-the-art solver for solving the 
dictionary learning problems.3 The data set Y has dimension 784 × 4000, the dic-
tionary D has 784 rows and 1000 columns and c in (45) is chosen equal to 100. We 
set the FW parameters to τ1 = 10, τ2 = 20, and β = 0.001. In Fig. 6 we illustrate 
the reconstruction of an instance y ≈ Dx̄, where x̄ is the pruned solution obtained 
by prunAdag-V1 algorithm for increasing percentages of pruned parameters. The 
results show that the solution begins to degrade when more than 40% of parameters 
are pruned. Figure 7 confirms the visual intuition since the error measure ρ remains 
below 10−1 for prunAdag-V1 algorithm. Moreover, Fig. 7 on the left highlights that 
prunAdag-V1 is the most robust algorithm up to 70% of pruned components, while 
prunAdag-V3 and prunAdag-V4, despite their poor global accuracy, remain the best 
choice for aggressive pruning with more than 80% of pruned parameters.

3 We used the Matlab implementation KSVD-Box v13 of K-SVD available at http:​​​//w​ww​.cs.tech​ni​on​.ac.
il/∼r​on​rubin/​software.html with default ​p​a​r​a​m​e​t​e​r​s​.​​
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Fig. 2  Dynamic of parameters’ classification that corresponds to the cardinality of the sets Ok , Ak , and 
Dk  within 1000 iteration or until convergence (Random least-squares A1)
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3.4  Binary classification

Finally, we test our method on the averaged logistic loss for binary classification. 
We assume that a labeled training set {yi, zi} with yi ∈ Rn and zi ∈ {0, 1} for 
i = 1, . . . , N  is available, where zi classifies each sample into two distinct classes. 
The averaged logistic loss over all samples is neither linear nor convex, and it is 
defined as

	
f(x) = 1

N

N∑
i=1

log(1 + e−ziyT
i x).� (46)

If the number of features in the data set is large, we expect that some may be redun-
dant or irrelevant in the classification process; thus, pruning can be used to achieve 
a sparse solution that does not consistently degrade the classification performance. 
We use prunAdag to minimize the function in (46) on the training set and to promote 
convergence towards a solution x in which the largest components correspond to 
relevant features. Then, we prune the parameters to achieve different levels of spar-
sity σ and evaluate the prediction on the testing set using the pruned solution. For 

Fig. 3  Norm of the gradient on the left and percentage of parameters below δ = 10−3 on the right 
along 3000 iterations or until convergence for prunAdag-V2 and prunAdag-V3 and different target 
numbers of relevant parameters T (Random least-squares A1)
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this experiment, we select small-size data sets4 that have at least 100 features, that 
are MNIST5 [14], GISETTE [51], REGEDO [52], A9A [51], and MOLECULE [51]. 
We split the training and testing set following a ratio 70:30. The data is normalized 
using min-max normalization and each algorithm is randomly initialized and stopped 
after 2000 iterations. We set the FW parameters to τ1 = 10, τ2 = 100, and β = 0.5. 
The results are collected in Table 4, where we show the average test accuracy and 
the percentage of components pruned for each algorithm. In Fig. 8 we analyze the 
performance of the algorithms on the GISETTE data set.

Table 4 shows that all four versions of prunAdag yield a consistent reduction in 
the number of parameters of the model over 80% for all problems, without affect-
ing the classification performance, and are significantly more robust to pruning than 
Adagrad. We are not able to identify one of the four versions that outperforms the 
others; however, we can observe that prunAdag-V4 tolerates the largest number of 
pruned components. In Fig. 8 (c) we compare Adagrad, FW and prunAdag in terms 
of average robustness to pruning parameters after training on the GISETTE data set 

4 We randomly selected 1000 samples for MNIST and A9A.
5 Classification between even and odd numbers.

Fig. 4  On top, a gradient norm and b percentage of components below a fixed threshold δ = 10−3 
along iterations; at the bottom, c error measure ω and d error measure ρ for different percentages of 
pruned components after the optimisation (Random least-squares A2)

 

1 3



prunAdag: an adaptive pruning-aware gradient method

from 20 independent starting points. The figure clearly shows that all four versions 
of prunAdag are more robust to pruning than Adagrad, as small components corre-
spond to irrelevant components of the model. Indeed, all the versions show a stable 
accuracy for a 70% sparse solution and that of prunAdag-V2 and prunAdag-V4 are 
not affected significantly by pruning 90% of solution’s components. One also notes 
the excellent performance of FW on this example and level of sparsity. It seems that, 
even if the norm of the gradient at the final iterate is still larger after the training phase 
than is the case for prunAdag (see Fig. 8a)), it is sufficient to produce good model 
predictions.

4  Conclusions

We have proposed a new first-order OFFO method, named prunAdag, intended for 
applications where pruning of the variables/parameters is desirable. The new “prun-
ing-aware" algorithm uses a new strategy to classify parameters at each iteration 
of prunAdag algorithm into “optimisable" and “decreasable", instead of “relevant" 
and “irrelevant" as suggested in  [1], and extending the concept introduced in  [2], 
where the optimisation is performed on the components related to the largest par-

Fig. 5  On top, a gradient norm and b percentage of components below the threshold δ = 10−3 along 
iterations; at the bottom, c error measure ω and d error measure ρ for different percentages of pruned 
components σ after the optimisation (Sparco 11)

 

1 3



M. Porcelli et al.

tial derivatives. It also features a new framework to update parameters in these two 
classes separately, based on an Adagrad-like step for the first and on an adaptive 
trust-region approach to decrease the magnitude of the variables in the second. We 
proved the convergence of the method to first-order stationary points with global rate 
O(log(k)/

√
k + 1). Finally, we conducted numerical experiments on several real-

world applications, such as sparse signal recovery, dictionary learning, and binary 
classification. These experiments suggest that the new approach (and its prunAdag-
V3 version in particular) has a clear practical potential.

While we have, in this paper, focused on the “deterministic case" where the gra-
dient values are computed exactly, the “stochastic case" where the gradient may be 
contaminated by random noise (such as sampling) is also clearly of interest, and the 
object of current research. Also of interest is the inclusion of momentum in prunAdag 
or a similar algorithm.

Fig. 6  MNIST sparse coding step in dictionary learning. Visual representations of pruned solutions 
of our best algorithm prunAdag-V1 in dictionary learning application, for different percentage σ of 
pruned parameters in the first two rows (a). Adagrad solution for different levels of pruned components 
in the last two rows (b)
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Fig. 7  On top, a gradient norm decrease and b percentage of parameters below the threshold δ = 10−2 
along iterations; at the bottom, c error measure ω and d error measure ρ for pruned components per-
centage σ from 10% to 90% on the x-axis (MNIST)
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